Bioinspired 3D Vermiculite/Aramid Nanocomposites for High-Performance Flexible Electrical Insulation

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hao Li, , , Haoqing Jiang, , , Xiaoting Zhang, , , Shunxi Wen, , , Fanzhang Zeng, , , Wei Zou, , , Longhui Li, , , Zhenhua Zhang, , , Wei Zhang*, , and , Jianfeng Wang*, 
{"title":"Bioinspired 3D Vermiculite/Aramid Nanocomposites for High-Performance Flexible Electrical Insulation","authors":"Hao Li,&nbsp;, ,&nbsp;Haoqing Jiang,&nbsp;, ,&nbsp;Xiaoting Zhang,&nbsp;, ,&nbsp;Shunxi Wen,&nbsp;, ,&nbsp;Fanzhang Zeng,&nbsp;, ,&nbsp;Wei Zou,&nbsp;, ,&nbsp;Longhui Li,&nbsp;, ,&nbsp;Zhenhua Zhang,&nbsp;, ,&nbsp;Wei Zhang*,&nbsp;, and ,&nbsp;Jianfeng Wang*,&nbsp;","doi":"10.1021/acsami.5c12106","DOIUrl":null,"url":null,"abstract":"<p >Modern electronic systems are evolving toward miniaturized designs, flexible architectures, and high-power-density requirements. However, progress in developing electrical insulation materials that integrate mechanical robustness, flexibility, and thermal stability remains a critical challenge. This study introduces a novel nacre-inspired aramid-vermiculite nanopaper featuring a 3D interconnected layered network, designed for use in flexible electrical insulating applications. By embedding high-aspect-ratio vermiculite nanosheets within a three-dimensional aramid nanofiber network, we fabricated a high-strength, high-toughness electrical insulating nanopaper via a continuous sol–gel-film conversion method. The resulting nanopaper exhibits exceptional mechanical properties, achieving a tensile strength of 186 MPa, a work of fracture of 55 MJ m<sup>–3</sup>, and a strain-to-failure of 38.6%. Furthermore, it demonstrates high dielectric strength (193 kV mm<sup>–1</sup>) and nonflammable characteristics. The bioinspired vermiculite-based nanopaper displays superior electrical breakdown resistance and flame retardancy, highlighting its potential for advanced electrical insulation applications. The fabrication process and microstructural analysis reveal the importance of the 3D interconnected layered structure in achieving these enhanced properties.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 38","pages":"54031–54040"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c12106","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Modern electronic systems are evolving toward miniaturized designs, flexible architectures, and high-power-density requirements. However, progress in developing electrical insulation materials that integrate mechanical robustness, flexibility, and thermal stability remains a critical challenge. This study introduces a novel nacre-inspired aramid-vermiculite nanopaper featuring a 3D interconnected layered network, designed for use in flexible electrical insulating applications. By embedding high-aspect-ratio vermiculite nanosheets within a three-dimensional aramid nanofiber network, we fabricated a high-strength, high-toughness electrical insulating nanopaper via a continuous sol–gel-film conversion method. The resulting nanopaper exhibits exceptional mechanical properties, achieving a tensile strength of 186 MPa, a work of fracture of 55 MJ m–3, and a strain-to-failure of 38.6%. Furthermore, it demonstrates high dielectric strength (193 kV mm–1) and nonflammable characteristics. The bioinspired vermiculite-based nanopaper displays superior electrical breakdown resistance and flame retardancy, highlighting its potential for advanced electrical insulation applications. The fabrication process and microstructural analysis reveal the importance of the 3D interconnected layered structure in achieving these enhanced properties.

Abstract Image

仿生3D蛭石/芳纶纳米复合材料用于高性能柔性电绝缘。
现代电子系统正朝着小型化设计、灵活的体系结构和高功率密度的要求发展。然而,开发集机械稳健性、灵活性和热稳定性于一体的电绝缘材料的进展仍然是一个关键的挑战。本研究介绍了一种新型的以珍珠为灵感的芳纶蛭石纳米纸,具有三维互连的分层网络,设计用于柔性电绝缘应用。通过在三维芳纶纳米纤维网络中嵌入高纵横比蛭石纳米片,通过连续溶胶-凝胶-膜转化法制备了高强度、高韧性的电绝缘纳米纸。所制备的纳米纸具有优异的力学性能,抗拉强度为186 MPa,断裂功为55 MJ - m-3,应变-失效率为38.6%。此外,它具有高介电强度(193 kV mm-1)和不易燃特性。这种基于蛭石的仿生纳米纸具有优异的耐电击穿性和阻燃性,突出了其在高级电绝缘应用中的潜力。制备工艺和微观结构分析揭示了三维互连层状结构在实现这些增强性能方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信