Ultrarobust biomimetic mineralized membranes via heterophase interface engineering

IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-10-01 DOI:10.1016/j.matt.2025.102422
Yangxue Li , Pan Sun , Jing Guo , Chuang Lei , Edward N. Nxumalo , Bhekie B. Mamba , Xiaobin Yang , Xu Jiang , Lu Shao
{"title":"Ultrarobust biomimetic mineralized membranes via heterophase interface engineering","authors":"Yangxue Li ,&nbsp;Pan Sun ,&nbsp;Jing Guo ,&nbsp;Chuang Lei ,&nbsp;Edward N. Nxumalo ,&nbsp;Bhekie B. Mamba ,&nbsp;Xiaobin Yang ,&nbsp;Xu Jiang ,&nbsp;Lu Shao","doi":"10.1016/j.matt.2025.102422","DOIUrl":null,"url":null,"abstract":"<div><div>Advanced separation membranes are crucial for water-energy sustainability, but the synthesis of highly efficient membranes with excellent durability and antifouling ability remains highly challenging. Inspired by the natural mineralization processing of biominerals, ultrarobust and antifouling mineralized membranes were synthesized via heterophase interface engineering. At the heterophase interface, phosphate ions and tannic acid (TA) in the coagulation bath (nonsolvent phase) encounter the metal ions in the casting solution (solvent phase) for biomimetic mineralized membrane growth. Metal ions, as sites of mineralization nucleation, combine with phosphoric acid to form minerals, and TA regulates the mineralization process by chelating with metal ions. The mineralized membrane exhibited an exceptional permeance recovery rate (up to 99%) and modulus (4.1-fold higher than that of the control membrane), which were recorded for pressure-driven filtration tolerance. This study paves the way for the <em>in situ</em> synthesis of advanced membranes and materials for water treatment, catalysis, and solar evaporation.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 10","pages":"Article 102422"},"PeriodicalIF":17.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238525004655","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced separation membranes are crucial for water-energy sustainability, but the synthesis of highly efficient membranes with excellent durability and antifouling ability remains highly challenging. Inspired by the natural mineralization processing of biominerals, ultrarobust and antifouling mineralized membranes were synthesized via heterophase interface engineering. At the heterophase interface, phosphate ions and tannic acid (TA) in the coagulation bath (nonsolvent phase) encounter the metal ions in the casting solution (solvent phase) for biomimetic mineralized membrane growth. Metal ions, as sites of mineralization nucleation, combine with phosphoric acid to form minerals, and TA regulates the mineralization process by chelating with metal ions. The mineralized membrane exhibited an exceptional permeance recovery rate (up to 99%) and modulus (4.1-fold higher than that of the control membrane), which were recorded for pressure-driven filtration tolerance. This study paves the way for the in situ synthesis of advanced membranes and materials for water treatment, catalysis, and solar evaporation.

Abstract Image

Abstract Image

异相界面工程制备超粗仿生矿化膜
先进的分离膜对水-能源可持续性至关重要,但合成具有优异耐用性和防污能力的高效膜仍然具有很高的挑战性。受生物矿物自然矿化过程的启发,采用异相界面工程技术合成了超抗菌防污矿化膜。在异相界面,混凝液(非溶剂相)中的磷酸盐离子和单宁酸(TA)与铸造液(溶剂相)中的金属离子相遇,进行仿生矿化膜的生长。金属离子作为矿化成核的位点与磷酸结合形成矿物,TA通过与金属离子的螯合作用调节矿化过程。矿化膜表现出优异的渗透回收率(高达99%)和模量(比对照膜高4.1倍),记录了压力驱动的过滤耐受性。这项研究为原位合成用于水处理、催化和太阳能蒸发的先进膜和材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信