Pressure-Driven Structural and Optoelectronic Tuning of Cl-Substituted 2D Lead Halide Perovskite (ClPMA)2PbI4

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Muhammad Azeem, Jinhyuk Choi, Yeonhak Jung and Yongjae Lee*, 
{"title":"Pressure-Driven Structural and Optoelectronic Tuning of Cl-Substituted 2D Lead Halide Perovskite (ClPMA)2PbI4","authors":"Muhammad Azeem,&nbsp;Jinhyuk Choi,&nbsp;Yeonhak Jung and Yongjae Lee*,&nbsp;","doi":"10.1021/acs.jpclett.5c02337","DOIUrl":null,"url":null,"abstract":"<p >We present a systematic high-pressure investigation of the chlorine-functionalized two-dimensional hybrid perovskite (ClPMA)<sub>2</sub>PbI<sub>4</sub>, integrating <i>in situ</i> high-pressure synchrotron powder X-ray diffraction (HP-PXRD), photoluminescence spectroscopy (HP-PL), and first-principles density functional theory (DFT) calculations. Under hydrostatic compression up to 6.18 (±0.42) GPa, HP-PXRD reveals anisotropic lattice contraction (Δ<i>a/a</i><sub>0</sub> = 4.06%, Δ<i>b/b</i><sub>0</sub> = 3.00%, Δ<i>c/c</i><sub>0</sub> = 8.66%) with a bulk modulus of 16.8 (±1.5) GPa (<i>K</i><sub>0</sub> = 34.1 TPa<sup>–1</sup>) and the onset of amorphization near 6.18 (±0.42) GPa. DFT-optimized structures corroborate progressive PbI<sub>6</sub> octahedral flattening leading to reduced interlayer spacing and enhanced Cl···I, Cl···H, and I···H interactions. The full elastic tensor indicates moderate anisotropy (<i>A</i><sub>E</sub> = 2.1, <i>A</i><sub>G</sub> = 2.63) yet large Poisson’s ratios (−0.196 to 0.67), unveiling coexisting auxetic and elastic deformation pathways. HP-PL spectra exhibit a continuous red shift from 525.2 nm to ∼630.5 nm and intensity quenching, attributable to bond-contraction-induced bandgap narrowing and pressure-enhanced nonradiative recombination in the partially amorphous matrix. DFT band-structure calculations confirmed the pressure-dependent direct-gap evolution and maintaining k-space valence-band maximum and conduction-band minimum alignment. These findings elucidate the structural, mechanical, and optoelectronic tunability of (ClPMA)<sub>2</sub>PbI<sub>4</sub>, underscoring its promise for strain-engineered optoelectronic devices.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 37","pages":"9791–9799"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02337","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present a systematic high-pressure investigation of the chlorine-functionalized two-dimensional hybrid perovskite (ClPMA)2PbI4, integrating in situ high-pressure synchrotron powder X-ray diffraction (HP-PXRD), photoluminescence spectroscopy (HP-PL), and first-principles density functional theory (DFT) calculations. Under hydrostatic compression up to 6.18 (±0.42) GPa, HP-PXRD reveals anisotropic lattice contraction (Δa/a0 = 4.06%, Δb/b0 = 3.00%, Δc/c0 = 8.66%) with a bulk modulus of 16.8 (±1.5) GPa (K0 = 34.1 TPa–1) and the onset of amorphization near 6.18 (±0.42) GPa. DFT-optimized structures corroborate progressive PbI6 octahedral flattening leading to reduced interlayer spacing and enhanced Cl···I, Cl···H, and I···H interactions. The full elastic tensor indicates moderate anisotropy (AE = 2.1, AG = 2.63) yet large Poisson’s ratios (−0.196 to 0.67), unveiling coexisting auxetic and elastic deformation pathways. HP-PL spectra exhibit a continuous red shift from 525.2 nm to ∼630.5 nm and intensity quenching, attributable to bond-contraction-induced bandgap narrowing and pressure-enhanced nonradiative recombination in the partially amorphous matrix. DFT band-structure calculations confirmed the pressure-dependent direct-gap evolution and maintaining k-space valence-band maximum and conduction-band minimum alignment. These findings elucidate the structural, mechanical, and optoelectronic tunability of (ClPMA)2PbI4, underscoring its promise for strain-engineered optoelectronic devices.

Abstract Image

cl取代2D卤化铅钙钛矿(ClPMA)2PbI4的压力驱动结构和光电子调谐。
利用原位高压同步加速器粉末x射线衍射(HP-PXRD)、光致发光光谱(HP-PL)和第一性原理密度泛函理论(DFT)计算,对氯功能化的二维杂化钙钛矿(ClPMA)2PbI4进行了系统的高压研究。在高达6.18(±0.42)GPa的静水压力下,HP-PXRD显示各向异性晶格收缩(Δa/a0 = 4.06%, Δb/b0 = 3.00%, Δc/c0 = 8.66%),体积模量为16.8(±1.5)GPa (K0 = 34.1 TPa-1),非晶化开始于6.18(±0.42)GPa。dft优化后的结构证实了PbI6八面体逐渐扁平化,导致层间间距减小,Cl··I、Cl··H和I··H相互作用增强。全弹性张量表现出中等的各向异性(AE = 2.1, AG = 2.63)和较大的泊松比(-0.196 ~ 0.67),揭示了同时存在的形变和弹性变形路径。HP-PL光谱表现出从525.2 nm到~ 630.5 nm的连续红移和强度猝灭,这是由于部分非晶基体中键收缩引起的带隙缩小和压力增强的非辐射复合。DFT带结构计算证实了压力相关的直接间隙演化,并保持k空间价带最大值和导带最小对齐。这些发现阐明了(ClPMA)2PbI4的结构、机械和光电可调性,强调了其在应变工程光电器件中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信