Kihoon Kim, Sangjin Yang, Chanhyeok Kim, Jeewon Park, Seokhwan Jeong, Youngmin Kim, Jinsoo Park, Zhe Sun, Minseok Kang, Bong Joo Kang, Juhong Oh, Jae Sung Yun, Seung-Jae Shin, Changduk Yang, Hanul Min
{"title":"Non-volatile solid-state 4-(N-carbazolyl)pyridine additive for perovskite solar cells with improved thermal and operational stability","authors":"Kihoon Kim, Sangjin Yang, Chanhyeok Kim, Jeewon Park, Seokhwan Jeong, Youngmin Kim, Jinsoo Park, Zhe Sun, Minseok Kang, Bong Joo Kang, Juhong Oh, Jae Sung Yun, Seung-Jae Shin, Changduk Yang, Hanul Min","doi":"10.1038/s41560-025-01864-z","DOIUrl":null,"url":null,"abstract":"<p>Liquid-state 4-<i>tert</i>-butylpyridine is essential for achieving high performance in n–i–p perovskite solar cells. 4-<i>tert</i>- Butylpyridine effectively dissolves the lithium bis(trifluoromethanesulfonyl)imide dopant and stabilizes lithium ions. However, its high volatility and corrosive nature can degrade the perovskite layer and promote the formation of byproducts and pinholes in the hole transport layer under thermal stress, ultimately compromising device stability. Here we introduce a non-volatile, solid-state alternative—4-(<i>N</i>-carbazolyl)pyridine (4CP)—which stabilizes lithium ions and facilitates the formation of lithium bis(trifluoromethanesulfonyl)imide complexes. Perovskite solar cells incorporating 4CP achieve a power conversion efficiency of 26.2% (25.8% certified) and maintain 80% of their initial performance for over 3,000 h at maximum power point tracking. The unencapsulated devices retain 90% of their initial efficiency after 200 thermal shock cycles between −80 °C and 80 °C, and under continuous exposure to 65 °C and 85 °C. The adoption of 4CP could help improve the stability of n–i–p perovskite solar cells.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"35 1","pages":""},"PeriodicalIF":60.1000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-025-01864-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid-state 4-tert-butylpyridine is essential for achieving high performance in n–i–p perovskite solar cells. 4-tert- Butylpyridine effectively dissolves the lithium bis(trifluoromethanesulfonyl)imide dopant and stabilizes lithium ions. However, its high volatility and corrosive nature can degrade the perovskite layer and promote the formation of byproducts and pinholes in the hole transport layer under thermal stress, ultimately compromising device stability. Here we introduce a non-volatile, solid-state alternative—4-(N-carbazolyl)pyridine (4CP)—which stabilizes lithium ions and facilitates the formation of lithium bis(trifluoromethanesulfonyl)imide complexes. Perovskite solar cells incorporating 4CP achieve a power conversion efficiency of 26.2% (25.8% certified) and maintain 80% of their initial performance for over 3,000 h at maximum power point tracking. The unencapsulated devices retain 90% of their initial efficiency after 200 thermal shock cycles between −80 °C and 80 °C, and under continuous exposure to 65 °C and 85 °C. The adoption of 4CP could help improve the stability of n–i–p perovskite solar cells.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.