Statin-dependent and -independent pathways are associated with major adverse cardiovascular events in people with HIV.

Márton Kolossváry,Irini Sereti,Markella V Zanni,Carl J Fichtenbaum,Judith A Aberg,Gerald S Bloomfield,Carlos D Malvestutto,Judith S Currier,Sarah M Chu,Marissa R Diggs,Alex B Lu,Christopher deFilippi,Borek Foldyna,Sara McCallum,Craig A Sponseller,Michael T Lu,Pamela S Douglas,Heather J Ribaudo,Steven K Grinspoon
{"title":"Statin-dependent and -independent pathways are associated with major adverse cardiovascular events in people with HIV.","authors":"Márton Kolossváry,Irini Sereti,Markella V Zanni,Carl J Fichtenbaum,Judith A Aberg,Gerald S Bloomfield,Carlos D Malvestutto,Judith S Currier,Sarah M Chu,Marissa R Diggs,Alex B Lu,Christopher deFilippi,Borek Foldyna,Sara McCallum,Craig A Sponseller,Michael T Lu,Pamela S Douglas,Heather J Ribaudo,Steven K Grinspoon","doi":"10.1172/jci196021","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nStatin therapy lowers the risk of major adverse cardiovascular events (MACE) among people with HIV (PWH). Residual risk pathways contributing to excess MACE beyond low-density lipoprotein cholesterol (LDL-C) are not well understood. Our objective was to evaluate the association of statin responsive and other inflammatory and metabolic pathways to MACE in the Randomized Trial to Prevent Vascular Events in HIV (REPRIEVE).\r\n\r\nMETHODS\r\nCox proportional hazards models were used to assess the relationship between MACE and proteomic measurements at study entry and year 2 adjusting for time-updated statin use and baseline 10-year atherosclerotic cardiovascular disease risk score. We built a machine learning (ML) model to predict MACE using baseline proteins values with significant associations.\r\n\r\nRESULTS\r\nIn 765 individuals (age: 50.8±5.9 years, 82% males) among 7 proteins changing with statin vs. placebo, angiopoietin-related protein 3 (ANGPTL3) related most strongly to MACE (aHR: 2.31 per 2-fold higher levels; 95%CI: 1.11-4.80; p=0.03), such that lower levels of ANGPTL3 achieved with statin therapy were associated with lower MACE risk. Among 248 proteins not changing in response to statin therapy, 26 were associated with MACE at FDR<0.05. These proteins represented predominantly humoral immune response, leukocyte chemotaxis, and cytokine pathways. Our proteomic ML model achieved a 10-fold cross-validated c-index of 0.74±0.11 to predict MACE, improving on models using traditional risk prediction scores only (c-index: 0.61±0.18).\r\n\r\nCONCLUSIONS\r\nANGPTL3, as well as key inflammatory pathways may contribute to residual risk of MACE among PWH, beyond LDL-C.\r\n\r\nTRIAL REGISTRATION\r\n\r\n\r\nCLINICALTRIALS\r\ngov: NCT02344290.\r\n\r\nFUNDING\r\nNIH, Kowa, Gilead Sciences, ViiV.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci196021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUND Statin therapy lowers the risk of major adverse cardiovascular events (MACE) among people with HIV (PWH). Residual risk pathways contributing to excess MACE beyond low-density lipoprotein cholesterol (LDL-C) are not well understood. Our objective was to evaluate the association of statin responsive and other inflammatory and metabolic pathways to MACE in the Randomized Trial to Prevent Vascular Events in HIV (REPRIEVE). METHODS Cox proportional hazards models were used to assess the relationship between MACE and proteomic measurements at study entry and year 2 adjusting for time-updated statin use and baseline 10-year atherosclerotic cardiovascular disease risk score. We built a machine learning (ML) model to predict MACE using baseline proteins values with significant associations. RESULTS In 765 individuals (age: 50.8±5.9 years, 82% males) among 7 proteins changing with statin vs. placebo, angiopoietin-related protein 3 (ANGPTL3) related most strongly to MACE (aHR: 2.31 per 2-fold higher levels; 95%CI: 1.11-4.80; p=0.03), such that lower levels of ANGPTL3 achieved with statin therapy were associated with lower MACE risk. Among 248 proteins not changing in response to statin therapy, 26 were associated with MACE at FDR<0.05. These proteins represented predominantly humoral immune response, leukocyte chemotaxis, and cytokine pathways. Our proteomic ML model achieved a 10-fold cross-validated c-index of 0.74±0.11 to predict MACE, improving on models using traditional risk prediction scores only (c-index: 0.61±0.18). CONCLUSIONS ANGPTL3, as well as key inflammatory pathways may contribute to residual risk of MACE among PWH, beyond LDL-C. TRIAL REGISTRATION CLINICALTRIALS gov: NCT02344290. FUNDING NIH, Kowa, Gilead Sciences, ViiV.
他汀依赖性和非依赖性途径与HIV感染者的主要不良心血管事件相关。
背景:他汀类药物治疗可降低HIV感染者(PWH)发生主要不良心血管事件(MACE)的风险。导致MACE超过低密度脂蛋白胆固醇(LDL-C)的剩余风险途径尚不清楚。我们的目的是在预防HIV血管事件的随机试验(REPRIEVE)中评估他汀类药物反应性和其他炎症和代谢途径与MACE的关系。方法使用scox比例风险模型来评估MACE与研究开始时和第2年蛋白质组学测量之间的关系,调整时间更新的他汀类药物使用和基线10年动脉粥样硬化性心血管疾病风险评分。我们建立了一个机器学习(ML)模型,使用具有显著相关性的基线蛋白值来预测MACE。结果在765例患者(年龄:50.8±5.9岁,82%男性)中,他汀类药物与安慰剂改变的7种蛋白中,血管生成素相关蛋白3 (ANGPTL3)与MACE相关性最强(aHR: 2.31 / 2倍),95%CI: 1.11-4.80, p=0.03),表明他汀类药物治疗中ANGPTL3水平较低与MACE风险较低相关。248个蛋白对他汀类药物治疗没有改变,其中26个蛋白在FDR<0.05时与MACE相关。这些蛋白主要代表体液免疫反应、白细胞趋化性和细胞因子途径。我们的蛋白质组学ML模型获得了10倍交叉验证的c-指数0.74±0.11来预测MACE,改进了仅使用传统风险预测评分的模型(c-指数:0.61±0.18)。结论除了LDL-C外,sangptl3和关键炎症通路可能参与PWH中MACE的残留风险。临床试验注册:NCT02344290。资助nih, kova, Gilead Sciences, ViiV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信