A Dual-Broadband Liquid-Crystal Programmable Metasurface and Its Application in Terahertz Wireless Communications

IF 11.6 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Yuan Fu, Yuanbo Li, Xiaojian Fu, Lu Xu, Yujie Liu, Qun Yan Zhou, Jun Yang, Chong Han, Jun Yan Dai, Qiang Cheng, Tie Jun Cui
{"title":"A Dual-Broadband Liquid-Crystal Programmable Metasurface and Its Application in Terahertz Wireless Communications","authors":"Yuan Fu, Yuanbo Li, Xiaojian Fu, Lu Xu, Yujie Liu, Qun Yan Zhou, Jun Yang, Chong Han, Jun Yan Dai, Qiang Cheng, Tie Jun Cui","doi":"10.1016/j.eng.2025.08.040","DOIUrl":null,"url":null,"abstract":"Terahertz communication technology is envisioned as a promising candidate for the pivotal spectrum technology in future wireless communication networks. However, the limited penetration ability of terahertz waves makes line-of-sight (LoS) transmission indispensable, hindering the extensive application of terahertz communications. In this work, a novel liquid-crystal programmable metasurface (LCPM) is proposed for the first time, which can effectively achieve dual-broadband beam manipulation to improve link stability and extend coverage for terahertz communications in non-line-of-sight (NLoS) scenarios. The LCPM is operated in both the W band that covers 94 GHz and the D band that covers 140 GHz, corresponding to <em>x</em>-polarized and <em>y</em>-polarized wave incidence, respectively. Based on the proposed LCPM, realistic NLoS terahertz communication links are established and showcased. Communication measurements substantiate that the LCPM is capable of realizing extensive dynamic channel regulations and long-distance communications across both bands in various modulation schemes, supporting real-time high-speed video transmission. The experimental results validate the feasibility of employing the LCPM for terahertz wireless communications, paving the way for developing and implementing ubiquitous terahertz communication networks even with LoS blockage.","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"49 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.eng.2025.08.040","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Terahertz communication technology is envisioned as a promising candidate for the pivotal spectrum technology in future wireless communication networks. However, the limited penetration ability of terahertz waves makes line-of-sight (LoS) transmission indispensable, hindering the extensive application of terahertz communications. In this work, a novel liquid-crystal programmable metasurface (LCPM) is proposed for the first time, which can effectively achieve dual-broadband beam manipulation to improve link stability and extend coverage for terahertz communications in non-line-of-sight (NLoS) scenarios. The LCPM is operated in both the W band that covers 94 GHz and the D band that covers 140 GHz, corresponding to x-polarized and y-polarized wave incidence, respectively. Based on the proposed LCPM, realistic NLoS terahertz communication links are established and showcased. Communication measurements substantiate that the LCPM is capable of realizing extensive dynamic channel regulations and long-distance communications across both bands in various modulation schemes, supporting real-time high-speed video transmission. The experimental results validate the feasibility of employing the LCPM for terahertz wireless communications, paving the way for developing and implementing ubiquitous terahertz communication networks even with LoS blockage.
双频液晶可编程超表面及其在太赫兹无线通信中的应用
太赫兹通信技术被认为是未来无线通信网络中关键频谱技术的一个很有前途的候选者。然而,太赫兹波有限的穿透能力使得视距传输不可或缺,阻碍了太赫兹通信的广泛应用。在这项工作中,首次提出了一种新型液晶可编程超表面(LCPM),它可以有效地实现双宽带波束操纵,以提高链路稳定性并扩展非视距(NLoS)场景下太赫兹通信的覆盖范围。LCPM工作在94 GHz的W频段和140 GHz的D频段,分别对应x极化波入射和y极化波入射。基于所提出的LCPM,建立并展示了实际的NLoS太赫兹通信链路。通信测量表明,LCPM能够在各种调制方案下实现广泛的动态信道调节和跨两个频段的长距离通信,支持实时高速视频传输。实验结果验证了LCPM用于太赫兹无线通信的可行性,为开发和实现无所不在的太赫兹通信网络铺平了道路,即使存在LoS阻塞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信