Automatic specific absorption rate (SAR) prediction for hyperthermia treatment planning using deep learning method.

IF 3
Yankun Lang, Dario B Rodrigues, Lei Ren
{"title":"Automatic specific absorption rate (SAR) prediction for hyperthermia treatment planning using deep learning method.","authors":"Yankun Lang, Dario B Rodrigues, Lei Ren","doi":"10.1080/02656736.2025.2554860","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop a deep learning method for fast and accurate prediction of Specific Absorption Rate (SAR) distributions in the human head to support real-time hyperthermia treatment planning (HTP) of brain cancer patients.</p><p><strong>Approach: </strong>We propose an encoder-decoder neural network with cross-attention blocks to predict SAR maps from brain electrical properties, tumor 3D isocenter coordinates and microwave antenna phase settings. A dataset of 201 simulations was generated using finite-element modeling by varying tissue properties, tumor positions, and antenna phases within a human head model equipped with a three-ring phased-array applicator. The model was trained and evaluated on this dataset using standard error metrics and structural similarity analysis.</p><p><strong>Main results: </strong>On a held-out test set of 20 samples, the model achieved a mean root-mean-squared error (RMSE) of 3.3 W/kg and a mean absolute error (MAE) of 1.6 W/kg across the whole brain. In target regions, RMSE and MAE were 4.8 and 2.5 W/kg, respectively. The structural similarity index (SSIM) reached a mean value of 0.90, and the computation time was reduced from 10 min (simulation-based) to 4 s using our deep learning approach. The proposed method enables accurate, efficient SAR prediction for HTP in the brain, potentially supporting real-time HTP to optimize tumor temperature and improve clinical outcomes.</p><p><strong>Significance: </strong>This work introduces a novel deep learning-based approach that significantly accelerates SAR calculation in HTP, enabling adaptive therapy strategies to improve treatment outcomes in hyperthermia.</p>","PeriodicalId":520653,"journal":{"name":"International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group","volume":"42 1","pages":"2554860"},"PeriodicalIF":3.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479143/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02656736.2025.2554860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To develop a deep learning method for fast and accurate prediction of Specific Absorption Rate (SAR) distributions in the human head to support real-time hyperthermia treatment planning (HTP) of brain cancer patients.

Approach: We propose an encoder-decoder neural network with cross-attention blocks to predict SAR maps from brain electrical properties, tumor 3D isocenter coordinates and microwave antenna phase settings. A dataset of 201 simulations was generated using finite-element modeling by varying tissue properties, tumor positions, and antenna phases within a human head model equipped with a three-ring phased-array applicator. The model was trained and evaluated on this dataset using standard error metrics and structural similarity analysis.

Main results: On a held-out test set of 20 samples, the model achieved a mean root-mean-squared error (RMSE) of 3.3 W/kg and a mean absolute error (MAE) of 1.6 W/kg across the whole brain. In target regions, RMSE and MAE were 4.8 and 2.5 W/kg, respectively. The structural similarity index (SSIM) reached a mean value of 0.90, and the computation time was reduced from 10 min (simulation-based) to 4 s using our deep learning approach. The proposed method enables accurate, efficient SAR prediction for HTP in the brain, potentially supporting real-time HTP to optimize tumor temperature and improve clinical outcomes.

Significance: This work introduces a novel deep learning-based approach that significantly accelerates SAR calculation in HTP, enabling adaptive therapy strategies to improve treatment outcomes in hyperthermia.

基于深度学习方法的热疗计划中特定吸收率(SAR)的自动预测。
目的:建立一种快速准确预测人体头部比吸收率(SAR)分布的深度学习方法,为脑癌患者的实时热疗计划(HTP)提供支持。方法:我们提出了一个具有交叉注意块的编码器-解码器神经网络,用于从脑电特性、肿瘤三维等中心坐标和微波天线相位设置预测SAR图。采用有限元建模方法,在配备三环相控阵应用器的人体头部模型中,通过改变组织特性、肿瘤位置和天线相位,生成201个模拟数据集。该模型在该数据集上使用标准误差度量和结构相似性分析进行训练和评估。主要结果:在20个样本的hold - hold测试集上,该模型在整个大脑中的平均均方根误差(RMSE)为3.3 W/kg,平均绝对误差(MAE)为1.6 W/kg。在目标区域,RMSE和MAE分别为4.8和2.5 W/kg。使用我们的深度学习方法,结构相似指数(SSIM)达到0.90的平均值,计算时间从10分钟(基于模拟)减少到4秒。该方法能够准确、高效地预测脑内HTP,潜在地支持实时HTP优化肿瘤温度和改善临床结果。意义:这项工作引入了一种新的基于深度学习的方法,可以显著加快HTP的SAR计算,使适应性治疗策略能够改善热疗的治疗结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信