MicroRNA-mediated regulation of proliferation, lineage differentiation, and apoptosis in neural stem cells.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Biology Pub Date : 2025-12-01 Epub Date: 2025-09-15 DOI:10.1080/15476286.2025.2558631
Yukyeong Lee, Camilla Boschian, Kinarm Ko
{"title":"MicroRNA-mediated regulation of proliferation, lineage differentiation, and apoptosis in neural stem cells.","authors":"Yukyeong Lee, Camilla Boschian, Kinarm Ko","doi":"10.1080/15476286.2025.2558631","DOIUrl":null,"url":null,"abstract":"<p><p>Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function. Multiple studies have shown that miRNAs control the balance between self-renewal and differentiation during development through transcriptional networks and fine-tuned signalling pathways. They also regulate key biological processes, including cell fate determination, developmental timing, neurogenesis, gliogenesis, and apoptosis. Transcriptomic analyses and high-resolution profiling have revealed temporally and spatially restricted miRNA expression patterns in NSCs and their progeny, suggesting highly context-dependent regulatory functions. Here, we provide an integrated overview of recent advances in miRNA biology relevant to NSC maintenance and lineage specification, with a focus on the mechanistic understanding of miRNA roles in neuronal differentiation, glial development, and programmed cell death across neural development.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-17"},"PeriodicalIF":3.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439560/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2025.2558631","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function. Multiple studies have shown that miRNAs control the balance between self-renewal and differentiation during development through transcriptional networks and fine-tuned signalling pathways. They also regulate key biological processes, including cell fate determination, developmental timing, neurogenesis, gliogenesis, and apoptosis. Transcriptomic analyses and high-resolution profiling have revealed temporally and spatially restricted miRNA expression patterns in NSCs and their progeny, suggesting highly context-dependent regulatory functions. Here, we provide an integrated overview of recent advances in miRNA biology relevant to NSC maintenance and lineage specification, with a focus on the mechanistic understanding of miRNA roles in neuronal differentiation, glial development, and programmed cell death across neural development.

Abstract Image

Abstract Image

Abstract Image

microrna介导的神经干细胞增殖、谱系分化和凋亡调控。
神经干细胞(NSCs)是具有自我更新能力的多能干细胞,能够分化为中枢神经系统的所有神经谱系,包括神经元、少突胶质细胞和星形胶质细胞;因此,它们的增殖和分化对胚胎神经发育和成人大脑平衡至关重要。这些过程中的失调与神经系统疾病有关,因此需要阐明NSCs如何增殖和分化,以阐明神经发生的机制并发现潜在的治疗靶点。MicroRNAs (miRNAs)是一种小的、转录后的基因表达调节因子,参与神经系统发育和功能的许多方面。多项研究表明,mirna通过转录网络和微调信号通路控制发育过程中自我更新和分化之间的平衡。它们还调节关键的生物过程,包括细胞命运决定、发育时间、神经发生、胶质发生和细胞凋亡。转录组学分析和高分辨率分析揭示了NSCs及其后代中miRNA表达模式在时间和空间上的限制性,表明其高度依赖于环境的调节功能。在这里,我们提供了与NSC维持和谱系规范相关的miRNA生物学的最新进展的综合概述,重点是miRNA在神经发育过程中神经元分化、胶质发育和程序性细胞死亡中的作用的机制理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RNA Biology
RNA Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
82
审稿时长
1 months
期刊介绍: RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research. RNA Biology brings together a multidisciplinary community of scientists working in the areas of: Transcription and splicing Post-transcriptional regulation of gene expression Non-coding RNAs RNA localization Translation and catalysis by RNA Structural biology Bioinformatics RNA in disease and therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信