Dynamic dual-mode terahertz device with nonvolatile switching for integrated on-chip and free-space applications.

IF 9.9 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Yisheng Dong, Xieyu Chen, Shoujun Zhang, Zhihao Wang, Hongyi Li, Kuan Liu, Guanghong Xu, Quan Xu, Quan Li, Chunmei Ouyang, Tun Cao, Zhen Tian
{"title":"Dynamic dual-mode terahertz device with nonvolatile switching for integrated on-chip and free-space applications.","authors":"Yisheng Dong, Xieyu Chen, Shoujun Zhang, Zhihao Wang, Hongyi Li, Kuan Liu, Guanghong Xu, Quan Xu, Quan Li, Chunmei Ouyang, Tun Cao, Zhen Tian","doi":"10.1038/s41378-025-01020-3","DOIUrl":null,"url":null,"abstract":"<p><p>Terahertz communication systems demand versatile devices capable of simultaneously controlling propagating waves and surface plasmon polaritons (SPPs) in far-field (FF) and near-field (NF) channels, yet existing solutions are constrained by volatile operation, single-function limitations, and the inability to integrate NF and FF functionalities. Here, we present a nonvolatile reconfigurable terahertz metasurface platform leveraging the phase-change material Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub>(GST) to achieve on-demand dual-channel modulation-a first in the terahertz regime. By exploiting the stark conductivity contrast of GST between amorphous and crystalline states, our design enables energy-efficient switching between NF-SPP manipulation and FF-wavefront engineering without requiring continuous power input. Experimental validation demonstrates two devices: Device I dynamically transitions between NF SPP focusing and FF vortex beam generation, while Device II toggles NF anomalous SPP focusing and FF holographic imaging. The metasurface uniquely integrates simultaneous amplitude/phase control for SPPs and free-space waves, overcoming the single-channel limitations of prior works. With reversible switching cycles and nonvolatile state retention (>10 years), this platform bridges the gap between on-chip plasmonics and free-space terahertz technologies, offering transformative potential for applications in 6 G communication, encrypted data storage, and multifunctional metasensors.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"169"},"PeriodicalIF":9.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12417551/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-01020-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Terahertz communication systems demand versatile devices capable of simultaneously controlling propagating waves and surface plasmon polaritons (SPPs) in far-field (FF) and near-field (NF) channels, yet existing solutions are constrained by volatile operation, single-function limitations, and the inability to integrate NF and FF functionalities. Here, we present a nonvolatile reconfigurable terahertz metasurface platform leveraging the phase-change material Ge2Sb2Te5(GST) to achieve on-demand dual-channel modulation-a first in the terahertz regime. By exploiting the stark conductivity contrast of GST between amorphous and crystalline states, our design enables energy-efficient switching between NF-SPP manipulation and FF-wavefront engineering without requiring continuous power input. Experimental validation demonstrates two devices: Device I dynamically transitions between NF SPP focusing and FF vortex beam generation, while Device II toggles NF anomalous SPP focusing and FF holographic imaging. The metasurface uniquely integrates simultaneous amplitude/phase control for SPPs and free-space waves, overcoming the single-channel limitations of prior works. With reversible switching cycles and nonvolatile state retention (>10 years), this platform bridges the gap between on-chip plasmonics and free-space terahertz technologies, offering transformative potential for applications in 6 G communication, encrypted data storage, and multifunctional metasensors.

具有非易失性开关的动态双模太赫兹器件,用于集成片上和自由空间应用。
太赫兹通信系统需要能够同时控制远场(FF)和近场(NF)通道中的传播波和表面等离子激元极化(SPPs)的多功能设备,然而现有的解决方案受到易失性操作、单一功能限制以及无法集成NF和FF功能的限制。在这里,我们提出了一种利用相变材料Ge2Sb2Te5(GST)实现按需双通道调制的非易失性可重构太赫兹超表面平台,这是太赫兹领域的第一次。通过利用GST在非晶态和晶态之间的明显电导率差异,我们的设计可以在不需要连续电源输入的情况下,在NF-SPP操作和ff波前工程之间实现节能切换。实验验证了两个器件:器件1在NF - SPP聚焦和FF涡束产生之间动态转换,器件2在NF - SPP异常聚焦和FF全息成像之间切换。该超表面独特地集成了spp和自由空间波的同时幅度/相位控制,克服了先前工作的单通道限制。该平台具有可逆开关周期和非易失性状态保持(bbb10年),弥合了片上等离子体和自由空间太赫兹技术之间的差距,为6g通信、加密数据存储和多功能超传感器的应用提供了革命性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信