{"title":"Thyroid Hormones and Aging: Modulators of Mitochondrial Health, Metabolic Flexibility, and Longevity Pathways.","authors":"Angela D Mazza","doi":"10.1055/a-2698-0521","DOIUrl":null,"url":null,"abstract":"<p><p>Thyroid hormones (TH), primarily triiodothyronine (T3) and thyroxine (T4), are critical regulators of metabolic rate, mitochondrial function, and cellular repair mechanisms. Emerging evidence suggests that thyroid status may significantly influence aging trajectories and longevity through modulation of key cellular pathways. Objective: This review explores the role of thyroid hormones in aging biology, with a focus on their interaction with longevity-associated signaling pathways and the hallmarks of aging. Both physiological and subclinical thyroid states in the context of healthspan, cognitive preservation, metabolic resilience, and mitochondrial integrity are explored. A narrative synthesis of human and animal studies was conducted, including mechanistic, epidemiologic, and clinical data, to evaluate how thyroid hormone levels affect aging pathways such as mTOR, AMPK, IGF-1, sirtuins, FOXO transcription factors, and mitochondrial biogenesis. Thyroid hormones modulate several hallmarks of aging, including mitochondrial dysfunction, genomic instability, epigenetic drift, and deregulated nutrient sensing. T3 enhances mitochondrial respiration and autophagy while interacting with mTOR and AMPK to regulate energy balance. Altered thyroid function-particularly subclinical hypothyroidism, has been paradoxically associated with increased longevity in some centenarian cohorts, possibly due to reduced oxidative metabolism. However, overt thyroid dysfunction is linked to increased metabolic risk in aging populations. Thyroid hormones serve as metabolic gatekeepers that influence both cellular aging and organismal longevity. A deeper understanding of their role in aging pathways may inform novel strategies for promoting healthy aging, including thyroid hormone modulation, and personalized endocrine optimization.</p>","PeriodicalId":12999,"journal":{"name":"Hormone and Metabolic Research","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormone and Metabolic Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2698-0521","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Thyroid hormones (TH), primarily triiodothyronine (T3) and thyroxine (T4), are critical regulators of metabolic rate, mitochondrial function, and cellular repair mechanisms. Emerging evidence suggests that thyroid status may significantly influence aging trajectories and longevity through modulation of key cellular pathways. Objective: This review explores the role of thyroid hormones in aging biology, with a focus on their interaction with longevity-associated signaling pathways and the hallmarks of aging. Both physiological and subclinical thyroid states in the context of healthspan, cognitive preservation, metabolic resilience, and mitochondrial integrity are explored. A narrative synthesis of human and animal studies was conducted, including mechanistic, epidemiologic, and clinical data, to evaluate how thyroid hormone levels affect aging pathways such as mTOR, AMPK, IGF-1, sirtuins, FOXO transcription factors, and mitochondrial biogenesis. Thyroid hormones modulate several hallmarks of aging, including mitochondrial dysfunction, genomic instability, epigenetic drift, and deregulated nutrient sensing. T3 enhances mitochondrial respiration and autophagy while interacting with mTOR and AMPK to regulate energy balance. Altered thyroid function-particularly subclinical hypothyroidism, has been paradoxically associated with increased longevity in some centenarian cohorts, possibly due to reduced oxidative metabolism. However, overt thyroid dysfunction is linked to increased metabolic risk in aging populations. Thyroid hormones serve as metabolic gatekeepers that influence both cellular aging and organismal longevity. A deeper understanding of their role in aging pathways may inform novel strategies for promoting healthy aging, including thyroid hormone modulation, and personalized endocrine optimization.
期刊介绍:
Covering the fields of endocrinology and metabolism from both, a clinical and basic science perspective, this well regarded journal publishes original articles, and short communications on cutting edge topics.
Speedy publication time is given high priority, ensuring that endocrinologists worldwide get timely, fast-breaking information as it happens.
Hormone and Metabolic Research presents reviews, original papers, and short communications, and includes a section on Innovative Methods. With a preference for experimental over observational studies, this journal disseminates new and reliable experimental data from across the field of endocrinology and metabolism to researchers, scientists and doctors world-wide.