Reducing Calibration Bias for Person Fit Assessment by Mixture Model Expansion.

IF 2.3 3区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Johan Braeken, Saskia van Laar
{"title":"Reducing Calibration Bias for Person Fit Assessment by Mixture Model Expansion.","authors":"Johan Braeken, Saskia van Laar","doi":"10.1177/00131644251364252","DOIUrl":null,"url":null,"abstract":"<p><p>Measurement appropriateness concerns the question of whether the test or survey scale under consideration can provide a valid measure for a specific individual. An aberrant item response pattern would provide internal counterevidence against using the test/scale for this person, whereas a more typical item response pattern would imply a fit of the measure to the person. Traditional approaches, including the popular Lz person fit statistic, are hampered by their two-stage estimation procedure and the fact that the fit for the person is determined based on the model calibrated on data that include the misfitting persons. This calibration bias creates suboptimal conditions for person fit assessment. Solutions have been sought through the derivation of approximating bias-correction formulas and/or iterative purification procedures. Yet, here we discuss an alternative one-stage solution that involves calibrating a model expansion of the measurement model that includes a mixture component for target aberrant response patterns. A simulation study evaluates the approach under the most unfavorable and least-studied conditions for person fit indices, short polytomous survey scales, similar to those found in large-scale educational assessments such as the Program for International Student Assessment or Trends in Mathematics and Science Study.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":" ","pages":"00131644251364252"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413990/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644251364252","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Measurement appropriateness concerns the question of whether the test or survey scale under consideration can provide a valid measure for a specific individual. An aberrant item response pattern would provide internal counterevidence against using the test/scale for this person, whereas a more typical item response pattern would imply a fit of the measure to the person. Traditional approaches, including the popular Lz person fit statistic, are hampered by their two-stage estimation procedure and the fact that the fit for the person is determined based on the model calibrated on data that include the misfitting persons. This calibration bias creates suboptimal conditions for person fit assessment. Solutions have been sought through the derivation of approximating bias-correction formulas and/or iterative purification procedures. Yet, here we discuss an alternative one-stage solution that involves calibrating a model expansion of the measurement model that includes a mixture component for target aberrant response patterns. A simulation study evaluates the approach under the most unfavorable and least-studied conditions for person fit indices, short polytomous survey scales, similar to those found in large-scale educational assessments such as the Program for International Student Assessment or Trends in Mathematics and Science Study.

利用混合模型扩展减少人的适合度评估的校准偏差。
测量适当性涉及的问题是,所考虑的测试或调查量表能否为特定个体提供有效的测量。一个异常的项目反应模式会提供内部的反证,反对对这个人使用测试/量表,而一个更典型的项目反应模式会暗示测量方法适合这个人。传统的方法,包括流行的Lz人拟合统计量,由于其两阶段估计过程以及基于包含不拟合人的数据校准的模型来确定人的拟合程度而受到阻碍。这种校准偏差造成了人员适合度评估的次优条件。通过推导近似偏差校正公式和/或迭代净化程序来寻求解决方案。然而,我们在这里讨论一种可选的单阶段解决方案,该解决方案涉及校准测量模型的模型扩展,该模型包含目标异常响应模式的混合组件。一项模拟研究评估了该方法在最不利和研究最少的条件下的个人适合指数,短多分调查量表,类似于国际学生评估计划或数学和科学研究趋势等大规模教育评估中发现的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Educational and Psychological Measurement
Educational and Psychological Measurement 医学-数学跨学科应用
CiteScore
5.50
自引率
7.40%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信