Vaderament-A Nchiozem-Ngnitedem, Alan Paton, Gabin Thierry M Bitchagno
{"title":"Rotenoid diversity, distribution and evolution in plant lineages.","authors":"Vaderament-A Nchiozem-Ngnitedem, Alan Paton, Gabin Thierry M Bitchagno","doi":"10.1039/d5np00054h","DOIUrl":null,"url":null,"abstract":"<p><p>Covering upto 2025Rotenoids are angular hybrid isoflavonoids mainly characterized by an additional six-membered ring between the B and C rings of flavonoids. The extra ring introduces further chemical diversity to the densely substituted precursors, isoflavonoids, making rotenoids a significant group of compounds within the plant kingdom. Early biosynthesis studies by L. Crombie, <i>Nat. Prod. Rep.</i>, 1984, <b>1</b>, 3-19, and subsequent revisions housed rotenoids into three groups, based on the oxygenation pattern of the bridge carbons between rings B and C. Since then, many more new structures of rotenoids have been discovered, prompting a need to revisit this classification as key structural traits of rotenoids might contribute to phylogenetic relationships and lineage diversification of plants. The new classification builds upon previous considerations, but also incorporates the defining feature of rotenoids, the additional carbon at the C-6 position, leading to nine distinct classes (Types I-IX). Types I and VII were found with the most representatives, predominantly distributed across the Pentapetalae clade, but also found in a few monocots. Rotenoids were found in phylogenetically distant lineages within the clade, raising intriguing questions about the evolutionary pathways that led to their biosynthesis and how their occurrences could inform plant taxonomy. The review addresses these questions and provides a thorough understanding of rotenoids and their chemotaxonomy significance.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5np00054h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Covering upto 2025Rotenoids are angular hybrid isoflavonoids mainly characterized by an additional six-membered ring between the B and C rings of flavonoids. The extra ring introduces further chemical diversity to the densely substituted precursors, isoflavonoids, making rotenoids a significant group of compounds within the plant kingdom. Early biosynthesis studies by L. Crombie, Nat. Prod. Rep., 1984, 1, 3-19, and subsequent revisions housed rotenoids into three groups, based on the oxygenation pattern of the bridge carbons between rings B and C. Since then, many more new structures of rotenoids have been discovered, prompting a need to revisit this classification as key structural traits of rotenoids might contribute to phylogenetic relationships and lineage diversification of plants. The new classification builds upon previous considerations, but also incorporates the defining feature of rotenoids, the additional carbon at the C-6 position, leading to nine distinct classes (Types I-IX). Types I and VII were found with the most representatives, predominantly distributed across the Pentapetalae clade, but also found in a few monocots. Rotenoids were found in phylogenetically distant lineages within the clade, raising intriguing questions about the evolutionary pathways that led to their biosynthesis and how their occurrences could inform plant taxonomy. The review addresses these questions and provides a thorough understanding of rotenoids and their chemotaxonomy significance.
期刊介绍:
Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis.
With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results.
NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.