Sandip Prabhakar Shelake, Switi Dattatraya Kshirsagar, Bapan Biswas, Nalla Chakradhar, Chokkapu Appala Naidu, Annadanam V Sesha Sainath, Ujjwal Pal
{"title":"CdS Nanorod-Driven Photocatalytic Reforming of Pyridine-Functional Glycopolymers for H<sub>2</sub> Evolution.","authors":"Sandip Prabhakar Shelake, Switi Dattatraya Kshirsagar, Bapan Biswas, Nalla Chakradhar, Chokkapu Appala Naidu, Annadanam V Sesha Sainath, Ujjwal Pal","doi":"10.1002/cplu.202500401","DOIUrl":null,"url":null,"abstract":"<p><p>Photoreforming of biomass presents a promising approach for sustainable H<sub>2</sub> production by utilizing renewable solar energy under ambient conditions. However, its application is often limited by the poor solubility of biomass-derived substrates. Herein, this challenge is addressed by synthesizing hydrophilic, electron-rich pyridine-based glycopolymers via reversible addition-fragmentation chain transfer polymerization, followed by deacetylation of glucose- and maltose-based segments. The polymers and CdS nanorods are thoroughly characterized using various spectroscopic and thermal analyses. The resulting deacetylated glycopolymers exhibit enhanced aqueous solubility and are employed as biomass replacement for photoreforming. The as-prepared CdS nanorods with P4VP-b-PMDG significantly improve glucose photoreforming, achieving an efficient hydrogen evolution rate of up to 1685 μ mol h<sup>-1</sup> g<sup>-1</sup> with an apparent quantum yield of 4.10% under alkaline conditions (10 M NaOH). The CdS nanorods' stability is investigated through a photocatalytic recyclability test, representing a regeneration efficiency of 94.36% in the fourth cycle. This work highlights the potential of tailored hydrophilic polymers to overcome solubility limitations and enhance the efficiency of biomass photoreforming systems.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202500401"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202500401","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photoreforming of biomass presents a promising approach for sustainable H2 production by utilizing renewable solar energy under ambient conditions. However, its application is often limited by the poor solubility of biomass-derived substrates. Herein, this challenge is addressed by synthesizing hydrophilic, electron-rich pyridine-based glycopolymers via reversible addition-fragmentation chain transfer polymerization, followed by deacetylation of glucose- and maltose-based segments. The polymers and CdS nanorods are thoroughly characterized using various spectroscopic and thermal analyses. The resulting deacetylated glycopolymers exhibit enhanced aqueous solubility and are employed as biomass replacement for photoreforming. The as-prepared CdS nanorods with P4VP-b-PMDG significantly improve glucose photoreforming, achieving an efficient hydrogen evolution rate of up to 1685 μ mol h-1 g-1 with an apparent quantum yield of 4.10% under alkaline conditions (10 M NaOH). The CdS nanorods' stability is investigated through a photocatalytic recyclability test, representing a regeneration efficiency of 94.36% in the fourth cycle. This work highlights the potential of tailored hydrophilic polymers to overcome solubility limitations and enhance the efficiency of biomass photoreforming systems.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.