{"title":"Generators of top cohomology","authors":"Manoj Kummini, Mohit Upmanyu","doi":"10.1112/blms.70132","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> be a commutative Noetherian ring and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mi>X</mi>\n <mo>⟶</mo>\n <mo>Spec</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$f: X \\longrightarrow \\operatorname{Spec}R$</annotation>\n </semantics></math> a proper smooth morphism, of relative dimension <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>. From Hartshorne, <i>Residues and Duality</i>, Springer, 1966, one knows that the trace map <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>Tr</mo>\n <mi>f</mi>\n </msub>\n <mo>:</mo>\n <msup>\n <mo>H</mo>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mrow>\n <mi>X</mi>\n <mo>/</mo>\n <mi>R</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>⟶</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$\\operatorname{Tr}_f: \\operatorname{H}^n(X, \\omega _{X/R}) \\longrightarrow R$</annotation>\n </semantics></math> is an isomorphism when <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> has geometrically connected fibres. We construct an exact sequence that generates <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>Ext</mo>\n <mi>X</mi>\n <mi>n</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>O</mi>\n <mi>X</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mrow>\n <mi>X</mi>\n <mo>/</mo>\n <mi>R</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msup>\n <mo>H</mo>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mrow>\n <mi>X</mi>\n <mo>/</mo>\n <mi>R</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{Ext}_X^n(\\mathcal O_X, \\omega _{X/R}) = \\operatorname{H}^n(X, \\omega _{X/R})$</annotation>\n </semantics></math> as an <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>-module in the following cases:</p><p>\n </p><p>This partially answers a question raised by Lipman.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2865-2884"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70132","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a commutative Noetherian ring and a proper smooth morphism, of relative dimension . From Hartshorne, Residues and Duality, Springer, 1966, one knows that the trace map is an isomorphism when has geometrically connected fibres. We construct an exact sequence that generates as an -module in the following cases:
This partially answers a question raised by Lipman.
设R$ R$是一个交换诺瑟环,并且f: X {Spec $R} f: X \ lonightarrow \operatorname{Spec}R$是一个相对维数为n$ n$的光滑态射。从Hartshorne,残数与对偶性,b施普林格,1966,可知迹映射Tr f:H n (X, ω X / R) {R $\operatorname{Tr}_f:\operatorname{H}^n(X, \ ω _{X/R}) \ lonightarrow R$是一个同构,当f$ f$具有几何连接的纤维。我们构造一个精确的序列生成Ext X n (O X)ω X / R = H n (X,ω X/R)$ \operatorname{Ext}_X^n(\mathcal O_X, \omega _{X/R}) = \operatorname{H}^n(X, \omega _{X/R})$在以下情况下作为R$ R$ -模块:这部分地回答了利普曼提出的一个问题。