Cohomology of type B $B$ real permutohedral varieties

IF 0.9 3区 数学 Q2 MATHEMATICS
Younghan Yoon
{"title":"Cohomology of type \n \n B\n $B$\n real permutohedral varieties","authors":"Younghan Yoon","doi":"10.1112/blms.70125","DOIUrl":null,"url":null,"abstract":"<p>Type <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> and type <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> permutohedral varieties are classic examples of mathematics, and their topological invariants are well-known. This naturally leads to the investigation of the topology of their real loci, known as type <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> and type <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> real permutohedral varieties. The rational cohomology rings of type <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> real permutohedral varieties are fully described in terms of alternating permutations. Until now, only rational Betti numbers of type <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> real permutohedral varieties have been described in terms of <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math>-snakes. In this paper, we explicitly describe the multiplicative structure of the cohomology rings of type <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> real permutohedral varieties in terms of <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math>-snakes.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2770-2788"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70125","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Type A $A$ and type B $B$ permutohedral varieties are classic examples of mathematics, and their topological invariants are well-known. This naturally leads to the investigation of the topology of their real loci, known as type A $A$ and type B $B$ real permutohedral varieties. The rational cohomology rings of type A $A$ real permutohedral varieties are fully described in terms of alternating permutations. Until now, only rational Betti numbers of type B $B$ real permutohedral varieties have been described in terms of B $B$ -snakes. In this paper, we explicitly describe the multiplicative structure of the cohomology rings of type B $B$ real permutohedral varieties in terms of B $B$ -snakes.

Abstract Image

Abstract Image

B$实复面体型变异的上同性
类型A$和类型B$是数学中的经典例子,它们的拓扑不变量是众所周知的。这自然导致了对其实位点拓扑结构的研究,称为A型A型和B型B型实多面体变异。用交替置换的方法充分描述了A$ A$实置换面体型的有理上同环。到目前为止,只有B$ B$实多面体型的有理Betti数被用B$ B$ -蛇来描述。本文用B$ B$ -蛇明确地描述了B$ B$实复面体型上同环的乘法结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信