More unit distances in arbitrary norms

IF 0.9 3区 数学 Q2 MATHEMATICS
Josef Greilhuber, Carl Schildkraut, Jonathan Tidor
{"title":"More unit distances in arbitrary norms","authors":"Josef Greilhuber,&nbsp;Carl Schildkraut,&nbsp;Jonathan Tidor","doi":"10.1112/blms.70133","DOIUrl":null,"url":null,"abstract":"<p>For <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d\\geqslant 2$</annotation>\n </semantics></math> and any norm on <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {R}^d$</annotation>\n </semantics></math>, we prove that there exists a set of <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> points that spans at least <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mstyle>\n <mfrac>\n <mi>d</mi>\n <mn>2</mn>\n </mfrac>\n </mstyle>\n <mo>−</mo>\n <mi>o</mi>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mi>n</mi>\n <msub>\n <mi>log</mi>\n <mn>2</mn>\n </msub>\n <mi>n</mi>\n </mrow>\n <annotation>$(\\tfrac{d}{2}-o(1))n\\log _2n$</annotation>\n </semantics></math> unit distances under this norm for every <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>. This matches the upper bound recently proved by Alon, Bucić, and Sauermann for typical norms (i.e., norms lying in a comeagre set). We also show that for <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\geqslant 3$</annotation>\n </semantics></math> and a typical norm on <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {R}^d$</annotation>\n </semantics></math>, the unit distance graph of this norm contains a copy of <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>d</mi>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n </msub>\n <annotation>$K_{d,m}$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2885-2901"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70133","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For d 2 $d\geqslant 2$ and any norm on R d $\mathbb {R}^d$ , we prove that there exists a set of n $n$ points that spans at least ( d 2 o ( 1 ) ) n log 2 n $(\tfrac{d}{2}-o(1))n\log _2n$ unit distances under this norm for every n $n$ . This matches the upper bound recently proved by Alon, Bucić, and Sauermann for typical norms (i.e., norms lying in a comeagre set). We also show that for d 3 $d\geqslant 3$ and a typical norm on R d $\mathbb {R}^d$ , the unit distance graph of this norm contains a copy of K d , m $K_{d,m}$ for all m $m$ .

Abstract Image

Abstract Image

任意范数中更多的单位距离
对于d小于2 $d\geqslant 2$和R d $\mathbb {R}^d$上的任何规范,我们证明了存在一个n个$n$点的集合,它张成至少(d 2−o (1))) n log 2 n $(\tfrac{d}{2}-o(1))n\log _2n$在这个范数下的单位距离对于每一个n $n$。这与最近由Alon, buciki和Sauermann证明的典型范数(即,位于一个趋同集中的范数)的上界相匹配。我们还显示,对于d小于3 $d\geqslant 3$和R d $\mathbb {R}^d$上的典型范数,该范数的单位距离图包含K d的副本,M $K_{d,m}$代表所有M $m$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信