Josef Greilhuber, Carl Schildkraut, Jonathan Tidor
{"title":"More unit distances in arbitrary norms","authors":"Josef Greilhuber, Carl Schildkraut, Jonathan Tidor","doi":"10.1112/blms.70133","DOIUrl":null,"url":null,"abstract":"<p>For <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d\\geqslant 2$</annotation>\n </semantics></math> and any norm on <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {R}^d$</annotation>\n </semantics></math>, we prove that there exists a set of <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> points that spans at least <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mstyle>\n <mfrac>\n <mi>d</mi>\n <mn>2</mn>\n </mfrac>\n </mstyle>\n <mo>−</mo>\n <mi>o</mi>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mi>n</mi>\n <msub>\n <mi>log</mi>\n <mn>2</mn>\n </msub>\n <mi>n</mi>\n </mrow>\n <annotation>$(\\tfrac{d}{2}-o(1))n\\log _2n$</annotation>\n </semantics></math> unit distances under this norm for every <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>. This matches the upper bound recently proved by Alon, Bucić, and Sauermann for typical norms (i.e., norms lying in a comeagre set). We also show that for <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\geqslant 3$</annotation>\n </semantics></math> and a typical norm on <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {R}^d$</annotation>\n </semantics></math>, the unit distance graph of this norm contains a copy of <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>d</mi>\n <mo>,</mo>\n <mi>m</mi>\n </mrow>\n </msub>\n <annotation>$K_{d,m}$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2885-2901"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70133","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For and any norm on , we prove that there exists a set of points that spans at least unit distances under this norm for every . This matches the upper bound recently proved by Alon, Bucić, and Sauermann for typical norms (i.e., norms lying in a comeagre set). We also show that for and a typical norm on , the unit distance graph of this norm contains a copy of for all .