On the universal pairing for 2-complexes

IF 0.9 3区 数学 Q2 MATHEMATICS
Mikhail Khovanov, Vyacheslav Krushkal, John Nicholson
{"title":"On the universal pairing for 2-complexes","authors":"Mikhail Khovanov,&nbsp;Vyacheslav Krushkal,&nbsp;John Nicholson","doi":"10.1112/blms.70130","DOIUrl":null,"url":null,"abstract":"<p>The universal pairing for manifolds was defined and shown to lack positivity in dimension 4 in [Freedman, Kitaev, Nayak, Slingerland, Walker, and Wang, J. Geom. Topol. <b>9</b> (2005), 2303–2317]. We prove an analogous result for 2-complexes, and show that the universal pairing does not detect the difference between simple homotopy equivalence and 3-deformations. The question of whether these two equivalence relations are different for 2-complexes is the subject of the Andrews–Curtis conjecture. We also discuss the universal pairing for higher dimensional complexes and show that it is not positive.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2838-2853"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70130","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70130","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The universal pairing for manifolds was defined and shown to lack positivity in dimension 4 in [Freedman, Kitaev, Nayak, Slingerland, Walker, and Wang, J. Geom. Topol. 9 (2005), 2303–2317]. We prove an analogous result for 2-complexes, and show that the universal pairing does not detect the difference between simple homotopy equivalence and 3-deformations. The question of whether these two equivalence relations are different for 2-complexes is the subject of the Andrews–Curtis conjecture. We also discuss the universal pairing for higher dimensional complexes and show that it is not positive.

Abstract Image

Abstract Image

Abstract Image

关于2-配合物的普遍配对
在Freedman, Kitaev, Nayak, Slingerland, Walker和Wang, J. Geom中定义了流形的普遍配对,并证明了它在4维上缺乏正性。[j].植物学报,2005,23(3):393 - 397。我们证明了2-配合物的类似结果,并证明了普适配对不能检测到简单同伦等价与3-变形的区别。对于2-配合物,这两种等价关系是否不同的问题是Andrews-Curtis猜想的主题。我们还讨论了高维配合物的普遍配对,并证明了它是不正的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信