Topological Berry Antenna on a Silicon Chip for Terahertz Wireless Communication

IF 3.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sonu Kumar, Ridong Jia, Yi Ji Tan, Thomas Caiwei Tan, Pascal Szriftgiser, G. Arun Kumar, Guillaume Ducournau, Arokiaswami Alphones, Ranjan Singh
{"title":"Topological Berry Antenna on a Silicon Chip for Terahertz Wireless Communication","authors":"Sonu Kumar,&nbsp;Ridong Jia,&nbsp;Yi Ji Tan,&nbsp;Thomas Caiwei Tan,&nbsp;Pascal Szriftgiser,&nbsp;G. Arun Kumar,&nbsp;Guillaume Ducournau,&nbsp;Arokiaswami Alphones,&nbsp;Ranjan Singh","doi":"10.1002/adpr.202500123","DOIUrl":null,"url":null,"abstract":"<p>Nonzero Berry curvature is central to the existence of topological edge states in electronic and photonic valley-Hall systems. While manipulating the Berry curvature in condensed matter systems is challenging, valley-Hall topological photonics offer unprecedented control, where the broken spatial inversion symmetry alters the Berry curvature. Herein, an all-silicon Berry antenna is presented, using a continuously varying geometry corresponding to a gradual change in Berry curvature. The on-chip topological edge mode with a tunable field extent is achieved to enhance effective antenna aperture, creating a high-gain on-chip photonic antenna with perfectly planar wavefronts. Experimentally, a maximum gain of 17 dBi that supports 20 Gbps chip-to-chip wireless communication is demonstrated, with active optical tunability of the antenna gain with modulation depths of 8 dBi. This Berry antenna paves the way for the development of complementary metal-oxide-semiconductor (CMOS) compatible topological Berry devices, with potential applications in integrated micro-/nano-photonics, next-generation wireless communications (6G to Xth generation), and terahertz detection and ranging.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202500123","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202500123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nonzero Berry curvature is central to the existence of topological edge states in electronic and photonic valley-Hall systems. While manipulating the Berry curvature in condensed matter systems is challenging, valley-Hall topological photonics offer unprecedented control, where the broken spatial inversion symmetry alters the Berry curvature. Herein, an all-silicon Berry antenna is presented, using a continuously varying geometry corresponding to a gradual change in Berry curvature. The on-chip topological edge mode with a tunable field extent is achieved to enhance effective antenna aperture, creating a high-gain on-chip photonic antenna with perfectly planar wavefronts. Experimentally, a maximum gain of 17 dBi that supports 20 Gbps chip-to-chip wireless communication is demonstrated, with active optical tunability of the antenna gain with modulation depths of 8 dBi. This Berry antenna paves the way for the development of complementary metal-oxide-semiconductor (CMOS) compatible topological Berry devices, with potential applications in integrated micro-/nano-photonics, next-generation wireless communications (6G to Xth generation), and terahertz detection and ranging.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

用于太赫兹无线通信的硅晶片拓扑Berry天线
在电子和光子谷-霍尔系统中,非零贝里曲率是拓扑边缘态存在的核心。虽然在凝聚态系统中操纵贝里曲率是具有挑战性的,但谷-霍尔拓扑光子学提供了前所未有的控制,其中空间反演对称性的破坏改变了贝里曲率。本文提出了一种全硅贝里天线,采用连续变化的几何形状,对应于贝里曲率的逐渐变化。实现了具有可调场域的片上拓扑边缘模式,提高了天线的有效孔径,形成了具有完美平面波前的高增益片上光子天线。实验结果表明,该天线的最大增益为17 dBi,支持20 Gbps的片对片无线通信,并且在调制深度为8 dBi的情况下,天线增益具有主动光可调性。这种Berry天线为互补金属氧化物半导体(CMOS)兼容拓扑Berry器件的发展铺平了道路,在集成微/纳米光子学、下一代无线通信(6G到x代)以及太赫兹探测和测距方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信