{"title":"Minimum Non-Chromatic-\n \n \n \n λ\n \n \n -Choosable Graphs","authors":"Jialu Zhu, Xuding Zhu","doi":"10.1002/jgt.23267","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For a multiset <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>k</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>k</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>k</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> of positive integers, let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>k</mi>\n \n <mi>λ</mi>\n </msub>\n \n <mo>=</mo>\n \n <msubsup>\n <mo>∑</mo>\n \n <mrow>\n <mi>i</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>q</mi>\n </msubsup>\n \n <msub>\n <mi>k</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. A <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n </mrow>\n </mrow>\n </semantics></math>-list assignment of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a list assignment <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> such that the colour set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mo>⋃</mo>\n \n <mrow>\n <mi>v</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </msub>\n \n <mi>L</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> can be partitioned into the disjoint union <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>∪</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>2</mn>\n </msub>\n \n <mo>∪</mo>\n \n <mo>⋯</mo>\n \n <mo>∪</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>q</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>q</mi>\n </mrow>\n </mrow>\n </semantics></math> sets so that for each <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>i</mi>\n </mrow>\n </mrow>\n </semantics></math> and each vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∣</mo>\n \n <mi>L</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∩</mo>\n \n <msub>\n <mi>C</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>∣</mo>\n \n <mo>=</mo>\n \n <msub>\n <mi>k</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. We say <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n </mrow>\n </mrow>\n </semantics></math>-choosable if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math>-colourable for any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n </mrow>\n </mrow>\n </semantics></math>-list assignment <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>L</mi>\n </mrow>\n </mrow>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. The concept of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n </mrow>\n </mrow>\n </semantics></math>-choosability puts <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-colourability and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-choosability in a same framework: If <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mi>k</mi>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n </mrow>\n </mrow>\n </semantics></math>-choosability is equivalent to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-choosability; if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n </mrow>\n </mrow>\n </semantics></math> consists of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> copies of 1, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n </mrow>\n </mrow>\n </semantics></math>-choosability is equivalent to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math>-colourability. If <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n </mrow>\n </mrow>\n </semantics></math>-choosable, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>k</mi>\n \n <mi>λ</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-colourable. On the other hand, there are <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>k</mi>\n \n <mi>λ</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-colourable graphs that are not <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n </mrow>\n </mrow>\n </semantics></math>-choosable, provided that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n </mrow>\n </mrow>\n </semantics></math> contains an integer larger than 1. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϕ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>λ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> be the minimum number of vertices in a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>k</mi>\n \n <mi>λ</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-colourable non-<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n </mrow>\n </mrow>\n </semantics></math>-choosable graph. This paper determines the value of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϕ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>λ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 3","pages":"283-289"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23267","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a multiset of positive integers, let . A -list assignment of is a list assignment of such that the colour set can be partitioned into the disjoint union of sets so that for each and each vertex of , . We say is -choosable if is -colourable for any -list assignment of . The concept of -choosability puts -colourability and -choosability in a same framework: If , then -choosability is equivalent to -choosability; if consists of copies of 1, then -choosability is equivalent to -colourability. If is -choosable, then is -colourable. On the other hand, there are -colourable graphs that are not -choosable, provided that contains an integer larger than 1. Let be the minimum number of vertices in a -colourable non--choosable graph. This paper determines the value of for all .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .