Erdős space in Julia sets

IF 0.9 3区 数学 Q2 MATHEMATICS
David S. Lipham
{"title":"Erdős space in Julia sets","authors":"David S. Lipham","doi":"10.1112/blms.70131","DOIUrl":null,"url":null,"abstract":"<p>We prove that the rational Hilbert space, known as the <i>Erdős space</i> <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathfrak {E}$</annotation>\n </semantics></math>, surfaces in complex dynamics via iteration of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>e</mi>\n <mi>z</mi>\n </msup>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$e^z-1$</annotation>\n </semantics></math>. More precisely, <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$\\mathfrak {E}$</annotation>\n </semantics></math> is topologically equivalent to the set of endpoints of the Julia set <span></span><math>\n <semantics>\n <mrow>\n <mi>J</mi>\n <mo>(</mo>\n <msup>\n <mi>e</mi>\n <mi>z</mi>\n </msup>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$J(e^z-1)$</annotation>\n </semantics></math> whose orbits tend to infinity in the imaginary direction.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2854-2864"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70131","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the rational Hilbert space, known as the Erdős space E $\mathfrak {E}$ , surfaces in complex dynamics via iteration of e z 1 $e^z-1$ . More precisely, E $\mathfrak {E}$ is topologically equivalent to the set of endpoints of the Julia set J ( e z 1 ) $J(e^z-1)$ whose orbits tend to infinity in the imaginary direction.

Abstract Image

Abstract Image

Erdős Julia集合中的空间
我们证明了理性希尔伯特空间,即Erdős空间E $\mathfrak {E}$,在复杂动力学中通过ez−1$ E ^z-1$的迭代得到曲面。更准确地说,E $\mathfrak {E}$在拓扑上等价于Julia集合J(E z−1)$ J(E ^z-1)$的端点集合,其轨道在虚方向上趋于无穷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信