A Ramsey-Type Theorem on Deficiency

IF 1 3区 数学 Q2 MATHEMATICS
Jin Sun, Xinmin Hou
{"title":"A Ramsey-Type Theorem on Deficiency","authors":"Jin Sun,&nbsp;Xinmin Hou","doi":"10.1002/jgt.23271","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Ramsey Theorem says that a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has bounded order if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> contains no complete graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> or empty graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>E</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> as its induced subgraph. The Gyárfás-Sumner conjecture states that a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has bounded chromatic number if and only if it contains no induced subgraph isomorphic to <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> or a tree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>T</mi>\n </mrow>\n </mrow>\n </semantics></math>. The deficiency of a graph is the number of vertices that cannot be covered by a maximum matching. In this paper, we prove a Ramsey-type theorem for deficiency, that is, we characterize all the forbidden induced subgraphs for graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> with bounded deficiency. In this application, we answer a question proposed by Fujita et al. (2006).</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 3","pages":"313-321"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23271","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Ramsey Theorem says that a graph G has bounded order if and only if G contains no complete graph K n or empty graph E n as its induced subgraph. The Gyárfás-Sumner conjecture states that a graph G has bounded chromatic number if and only if it contains no induced subgraph isomorphic to K n or a tree T . The deficiency of a graph is the number of vertices that cannot be covered by a maximum matching. In this paper, we prove a Ramsey-type theorem for deficiency, that is, we characterize all the forbidden induced subgraphs for graphs G with bounded deficiency. In this application, we answer a question proposed by Fujita et al. (2006).

关于亏的一个ramsey型定理
拉姆齐定理说一个图G有有界阶当且仅当G不包含完全图Kn或者空图en作为它的诱导子图。Gyárfás-Sumner猜想指出一个图G有有界色数当且仅当它不包含与K n或a同构的诱导子图树;图的不足之处在于不能被最大匹配覆盖的顶点的数量。本文证明了缺的一个ramsey型定理,即刻画了有界缺的图G的所有禁止诱导子图。在这个应用中,我们回答了Fujita等人(2006)提出的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信