Supereulerian Oriented Graphs With Large Arc-Strong Connectivity

IF 1 3区 数学 Q2 MATHEMATICS
Jia Wei, Hong-Jian Lai
{"title":"Supereulerian Oriented Graphs With Large Arc-Strong Connectivity","authors":"Jia Wei,&nbsp;Hong-Jian Lai","doi":"10.1002/jgt.23254","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>An oriented graph is a digraph whose underlying graph is simple. Bang-Jensen and Thomassé conjectured that every digraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math> with arc-strong connectivity <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> at least as large as its independence number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>α</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> must be supereulerian. We introduce max–min ditrails in a digraph and investigate the relationship between the arc-strong connectivity <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> and matching number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>α</mi>\n \n <mo>′</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> to assure the supereulericity of an oriented graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math>. Utilizing the max–min ditrails with the related counting arguments, it is proved that every oriented graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mrow>\n <mo>⌊</mo>\n \n <mfrac>\n <mrow>\n <msup>\n <mi>α</mi>\n \n <mo>′</mo>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>D</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math> is supereulerian. This bound is the best possible.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 3","pages":"298-312"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23254","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An oriented graph is a digraph whose underlying graph is simple. Bang-Jensen and Thomassé conjectured that every digraph D with arc-strong connectivity λ ( D ) at least as large as its independence number α ( D ) must be supereulerian. We introduce max–min ditrails in a digraph and investigate the relationship between the arc-strong connectivity λ ( D ) and matching number α ( D ) to assure the supereulericity of an oriented graph D . Utilizing the max–min ditrails with the related counting arguments, it is proved that every oriented graph D with λ ( D ) α ( D ) 2 + 1 is supereulerian. This bound is the best possible.

具有大弧强连通性的超欧拉图
有向图是其底层图是简单的有向图。Bang-Jensen和thomass推测每个有向图D具有弧强连通性λ (D)至少和它的独立数一样大的α (D)必须是超欧拉的。在有向图中引入极大极小轨道,研究了有向图的强弧连通性λ (D)与匹配数之间的关系α′(D)来保证有向图D的超欧拉性。利用max-min函数和相关的计数参数,证明了每一个有向图D λ (D)≥⌊α ' (d) 2⌋+ 1是超欧拉律。这个边界是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信