Faber's socle intersection numbers via Gromov–Witten theory of elliptic curve

IF 0.9 3区 数学 Q2 MATHEMATICS
Xavier Blot, Sergey Shadrin, Ishan Jaztar Singh
{"title":"Faber's socle intersection numbers via Gromov–Witten theory of elliptic curve","authors":"Xavier Blot,&nbsp;Sergey Shadrin,&nbsp;Ishan Jaztar Singh","doi":"10.1112/blms.70117","DOIUrl":null,"url":null,"abstract":"<p>The goal of this very short note is to give a new proof of Faber's formula for the socle intersection numbers in the tautological ring of <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mi>g</mi>\n </msub>\n <annotation>$\\mathcal {M}_g$</annotation>\n </semantics></math>. This new proof exhibits a new beautiful tautological relation that stems from the recent work of Oberdieck–Pixton on the Gromov–Witten theory of the elliptic curve via a refinement of their argument, and some straightforward computation with the double ramification cycles that enters the recursion relations for the Hamiltonians of the KdV hierarchy.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2698-2707"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70117","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70117","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this very short note is to give a new proof of Faber's formula for the socle intersection numbers in the tautological ring of M g $\mathcal {M}_g$ . This new proof exhibits a new beautiful tautological relation that stems from the recent work of Oberdieck–Pixton on the Gromov–Witten theory of the elliptic curve via a refinement of their argument, and some straightforward computation with the double ramification cycles that enters the recursion relations for the Hamiltonians of the KdV hierarchy.

Abstract Image

Abstract Image

通过椭圆曲线的Gromov-Witten理论得到Faber的交点数
这篇短文的目的是给出M $\mathcal {M}_g$的同义环上的交点数的Faber公式的一个新的证明。这个新的证明展示了一个新的美丽的重言式关系,它源于Oberdieck-Pixton最近对椭圆曲线的Gromov-Witten理论的研究,通过对他们的论证的改进,以及一些直接的计算,这些计算进入了KdV层次的哈密顿量的递推关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信