Green Synthesis, Biological Potential, and Semiconducting Properties of MnO:ZnO Bimetallic Nanocomposites

IF 4.9 3区 化学 Q2 POLYMER SCIENCE
Sheema, Salman Zafar, Sardar Khan, Qaisar Jamal, Muhammad Uzair, Sajeela Akbar, Moeen Uddin, Mehwish Abbas, Asim Ali, Hamza Ali
{"title":"Green Synthesis, Biological Potential, and Semiconducting Properties of MnO:ZnO Bimetallic Nanocomposites","authors":"Sheema,&nbsp;Salman Zafar,&nbsp;Sardar Khan,&nbsp;Qaisar Jamal,&nbsp;Muhammad Uzair,&nbsp;Sajeela Akbar,&nbsp;Moeen Uddin,&nbsp;Mehwish Abbas,&nbsp;Asim Ali,&nbsp;Hamza Ali","doi":"10.1007/s10904-025-03689-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study reports the successful fabrication of manganese oxide: zinc oxide bimetallic nanocomposites, employing aqueous extract of <i>Curcuma zedoaria.</i> Biological potential and electrical properties of the composites have also been evaluated. The composites were fabricated using manganese and zinc salts in different ratios, i.e., 1:1, 1:2, and 2:1, referred to as MnO<sub>1</sub>:ZnO<sub>1</sub>, MnO<sub>1</sub>:ZnO<sub>2</sub>, and MnO<sub>2</sub>:ZnO<sub>1</sub>, respectively. X-ray diffraction studies revealed the crystalline nature of the composites, with crystallite sizes of 21 nm for both MnO<sub>1</sub>:ZnO<sub>1</sub> and MnO<sub>1</sub>:ZnO<sub>2</sub>, and 23 nm for MnO<sub>2</sub>:ZnO<sub>1</sub>. Moreover, the composites were demonstrated to be quite stable at high temperature. The MnO<sub>2</sub>:ZnO<sub>1</sub> composite exhibited the strongest anti-bacterial (zone of inhibition = 21 mm) and anti-fungal (zone of inhibition = 18 nm) activities, as compared to the other composites. On the other hand, the MnO<sub>1</sub>:ZnO<sub>2</sub> composite inhibited the DPPH radical strongly. Strong anti-leishmanial activity was shown by all the composites with IC<sub>50</sub> values of 0.03 (MnO<sub>1</sub>:ZnO<sub>1</sub>), 0.14 (MnO<sub>1</sub>:ZnO<sub>2</sub>), and 4.3 (MnO<sub>2</sub>:ZnO<sub>1</sub>) <i>µ</i>g/mL. The nanocomposites also displayed optimum energy storage and semiconducting abilities. The band gaps calculated for MnO<sub>1</sub>:ZnO<sub>1</sub>, MnO<sub>1</sub>:ZnO<sub>2</sub>, and MnO<sub>2</sub>:ZnO<sub>1</sub> were found to be 3.18, 3.26, and 3.11 eV, respectively. Optimum value of dielectric constant (~ 0.95) and capacitance (~ 1.0 pF) were observed for MnO<sub>2</sub>:ZnO<sub>1</sub>, while the MnO<sub>1</sub>:ZnO<sub>2</sub> composite exhibited the best AC conductivity (1.8 × 10<sup>− 9</sup> S/m). All the samples exhibited the inverse relationship between capacitance and AC conductivity. The work thus shows that the combination of Mn and Zn imparts special characteristics to the nanocomposite, making it biologically effective and at the same time a suitable candidate for use in semiconductors.</p></div>","PeriodicalId":639,"journal":{"name":"Journal of Inorganic and Organometallic Polymers and Materials","volume":"35 8","pages":"6688 - 6708"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic and Organometallic Polymers and Materials","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10904-025-03689-5","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports the successful fabrication of manganese oxide: zinc oxide bimetallic nanocomposites, employing aqueous extract of Curcuma zedoaria. Biological potential and electrical properties of the composites have also been evaluated. The composites were fabricated using manganese and zinc salts in different ratios, i.e., 1:1, 1:2, and 2:1, referred to as MnO1:ZnO1, MnO1:ZnO2, and MnO2:ZnO1, respectively. X-ray diffraction studies revealed the crystalline nature of the composites, with crystallite sizes of 21 nm for both MnO1:ZnO1 and MnO1:ZnO2, and 23 nm for MnO2:ZnO1. Moreover, the composites were demonstrated to be quite stable at high temperature. The MnO2:ZnO1 composite exhibited the strongest anti-bacterial (zone of inhibition = 21 mm) and anti-fungal (zone of inhibition = 18 nm) activities, as compared to the other composites. On the other hand, the MnO1:ZnO2 composite inhibited the DPPH radical strongly. Strong anti-leishmanial activity was shown by all the composites with IC50 values of 0.03 (MnO1:ZnO1), 0.14 (MnO1:ZnO2), and 4.3 (MnO2:ZnO1) µg/mL. The nanocomposites also displayed optimum energy storage and semiconducting abilities. The band gaps calculated for MnO1:ZnO1, MnO1:ZnO2, and MnO2:ZnO1 were found to be 3.18, 3.26, and 3.11 eV, respectively. Optimum value of dielectric constant (~ 0.95) and capacitance (~ 1.0 pF) were observed for MnO2:ZnO1, while the MnO1:ZnO2 composite exhibited the best AC conductivity (1.8 × 10− 9 S/m). All the samples exhibited the inverse relationship between capacitance and AC conductivity. The work thus shows that the combination of Mn and Zn imparts special characteristics to the nanocomposite, making it biologically effective and at the same time a suitable candidate for use in semiconductors.

MnO:ZnO双金属纳米复合材料的绿色合成、生物潜力和半导体性能
本文报道了以莪术水提物为原料成功制备氧化锰:氧化锌双金属纳米复合材料。并对复合材料的生物电势和电学性能进行了评价。采用锰锌盐分别以1:1、1:2和2:1的比例(MnO1:ZnO1、MnO1:ZnO2和MnO2:ZnO1)制备复合材料。x射线衍射研究表明,MnO1:ZnO1和MnO1:ZnO2的晶粒尺寸均为21 nm, MnO2:ZnO1的晶粒尺寸为23 nm。此外,复合材料在高温下表现出相当的稳定性。与其他复合材料相比,MnO2:ZnO1复合材料表现出最强的抑菌活性(抑制区= 21 mm)和抗真菌活性(抑制区= 18 nm)。另一方面,MnO1:ZnO2复合材料对DPPH自由基有较强的抑制作用。复合材料的IC50值分别为0.03 (MnO1:ZnO1)、0.14 (MnO1:ZnO2)和4.3 (MnO2:ZnO1)µg/mL,抗利什曼原虫活性较强。纳米复合材料还显示出最佳的储能和半导体性能。计算得到MnO1:ZnO1、MnO1:ZnO2和MnO2:ZnO1的带隙分别为3.18、3.26和3.11 eV。MnO2:ZnO1的最佳介电常数为~ 0.95,电容为~ 1.0 pF,而MnO1:ZnO2复合材料的交流电导率为1.8 × 10−9 S/m。所有样品的电容与交流电导率呈反比关系。因此,这项工作表明,Mn和Zn的结合赋予纳米复合材料特殊的特性,使其具有生物有效性,同时也是半导体应用的合适候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
7.50%
发文量
335
审稿时长
1.8 months
期刊介绍: Journal of Inorganic and Organometallic Polymers and Materials [JIOP or JIOPM] is a comprehensive resource for reports on the latest theoretical and experimental research. This bimonthly journal encompasses a broad range of synthetic and natural substances which contain main group, transition, and inner transition elements. The publication includes fully peer-reviewed original papers and shorter communications, as well as topical review papers that address the synthesis, characterization, evaluation, and phenomena of inorganic and organometallic polymers, materials, and supramolecular systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信