Recognizing Trees From Incomplete Decks

IF 1 3区 数学 Q2 MATHEMATICS
Gabriëlle Zwaneveld
{"title":"Recognizing Trees From Incomplete Decks","authors":"Gabriëlle Zwaneveld","doi":"10.1002/jgt.23274","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, the unlabeled subgraphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>v</mi>\n </mrow>\n </mrow>\n </semantics></math> are called the cards of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. The deck of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is the multiset <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>v</mi>\n \n <mo>:</mo>\n \n <mi>v</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Wendy Myrvold showed that a disconnected graph and a connected graph both on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices have at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>⌊</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math> cards in common and found (infinite) families of trees and disconnected forests for which this upper bound is tight. Bowler, Brown, and Fenner conjectured that this bound is tight for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mn>44</mn>\n </mrow>\n </mrow>\n </semantics></math>. In this article, we prove this conjecture for sufficiently large <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math>. The main result is that a tree <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>T</mi>\n </mrow>\n </mrow>\n </semantics></math> and a unicyclic graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices have at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>⌊</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math> common cards. Combined with Myrvold's work, this shows that it can be determined whether a graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices is a tree from any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>⌊</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> of its cards. On the basis of this theorem, it follows that any forest and nonforest also have at most <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>⌊</mo>\n \n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n \n <mo>⌋</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math> common cards. Furthermore, the main ideas of the proof for trees are used to show that the girth of a graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices can be determined based on any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mn>3</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math> of its cards. Lastly, we show that any <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mrow>\n <mn>5</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mn>6</mn>\n </mfrac>\n \n <mo>+</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> cards determine whether a graph is bipartite.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 3","pages":"322-336"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23274","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23274","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a graph G , the unlabeled subgraphs G v are called the cards of G . The deck of G is the multiset { G v : v V ( G ) } . Wendy Myrvold showed that a disconnected graph and a connected graph both on n vertices have at most n 2 + 1 cards in common and found (infinite) families of trees and disconnected forests for which this upper bound is tight. Bowler, Brown, and Fenner conjectured that this bound is tight for n 44 . In this article, we prove this conjecture for sufficiently large n . The main result is that a tree T and a unicyclic graph G on n vertices have at most n 2 + 1 common cards. Combined with Myrvold's work, this shows that it can be determined whether a graph on n vertices is a tree from any n 2 + 2 of its cards. On the basis of this theorem, it follows that any forest and nonforest also have at most n 2 + 1 common cards. Furthermore, the main ideas of the proof for trees are used to show that the girth of a graph on n vertices can be determined based on any 2 n 3 + 1 of its cards. Lastly, we show that any 5 n 6 + 2 cards determine whether a graph is bipartite.

Abstract Image

从不完整的甲板上识别树木
给定一个图G,未标记的子图G−v称为G的牌。G的牌是多集合{G−v :v∈v (G)} .Wendy Myrvold证明了在n个顶点上的连通图和不连通图最多有⌊n2⌋+ 1张共同的牌,并发现(无限)树族和不相连的森林,其上界是紧的。Bowler, Brown和Fenner推测,当n≥44时,这个界是紧的。在本文中,我们在n足够大的情况下证明了这个猜想。主要的结果是树T和单环图G在n上顶点最多有⌊n 2⌋+1张普通卡。 结合Myrvold的工作,这表明,可以确定一个有n个顶点的图是否是来自任意数组n的树2⌋+ 2张牌。根据这个定理,由此可见,任何森林和非森林也最多有⌊n 2⌋+1张普通卡。此外,树的证明的主要思想是用来证明一个有n个顶点的图的周长可以基于任意2n来确定3 + 1张牌。最后,我们证明了任意5张n张6 + 2张牌判断一个图是否是二部图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信