Mechanistic insights into the photocatalytic and electrocatalytic activities of MgNiO2: role of reactive oxygen species and oxygen vacancies†

Sandhyawasini Kumari, Amrita Tripathy, Vishalakshi Gurumurthy DileepKumar, Afaq Ahmad Khan, Ashoka Siddaramanna, John Kiwi, Mysore Sridhar Santosh, Sami Rtimi, Khushwant Singh and Sai Smaran S. B.
{"title":"Mechanistic insights into the photocatalytic and electrocatalytic activities of MgNiO2: role of reactive oxygen species and oxygen vacancies†","authors":"Sandhyawasini Kumari, Amrita Tripathy, Vishalakshi Gurumurthy DileepKumar, Afaq Ahmad Khan, Ashoka Siddaramanna, John Kiwi, Mysore Sridhar Santosh, Sami Rtimi, Khushwant Singh and Sai Smaran S. B.","doi":"10.1039/D5LF00102A","DOIUrl":null,"url":null,"abstract":"<p >Granular MgNiO<small><sub>2</sub></small> has emerged as a promising catalyst owing to its remarkable electrocatalytic activity and photodegradation efficiency under visible light. In this work, granular surface-engineered MgNiO<small><sub>2</sub></small> nanoparticles were synthesized using the precipitation method. The interaction of Mg and Ni, forming Mg–Ni–O structures during high-temperature MgNiO<small><sub>2</sub></small> synthesis, was investigated through X-ray photoelectron spectroscopy (XPS) analysis. The presence of Ni<small><sup>3+</sup></small> species in the ionic form indicated charge transfer reactions in the catalyst. The band gaps of the as-prepared MgNiO<small><sub>2</sub></small> and NiO were determined to be 2.2 eV and 3.7 eV, respectively. The first-order transverse optical (TO) phonon modes observed at 536 cm<small><sup>−1</sup></small> indicated the presence of NiO, which was identified as the primary contributor to the Raman peaks. Further, the photocatalytic degradation of caffeine under visible light achieved a removal efficiency of 95.5% within 180 minutes. The intermediate reactive oxidative species (ROS) leading to MgNiO<small><sub>2</sub></small> degradation were identified, and their lifetime and diffusion length in the solution were reported. Superoxide (O<small><sup>2−</sup></small>˙) and hydroxyl (˙OH) radicals were identified as the main ROS contributing to caffeine degradation. The electrocatalytic oxygen evolution reaction (OER) indicated a high density of oxygen vacancies in MgNiO<small><sub>2</sub></small> compared to NiO, suggesting the promoter role of Mg species in the photocatalyst. These insights provide a holistic understanding of MgNiO<small><sub>2</sub></small> as a catalyst and its pivotal role in green and efficient caffeine photodegradation and the electrocatalytic OER.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 5","pages":" 1435-1447"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d5lf00102a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lf/d5lf00102a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Granular MgNiO2 has emerged as a promising catalyst owing to its remarkable electrocatalytic activity and photodegradation efficiency under visible light. In this work, granular surface-engineered MgNiO2 nanoparticles were synthesized using the precipitation method. The interaction of Mg and Ni, forming Mg–Ni–O structures during high-temperature MgNiO2 synthesis, was investigated through X-ray photoelectron spectroscopy (XPS) analysis. The presence of Ni3+ species in the ionic form indicated charge transfer reactions in the catalyst. The band gaps of the as-prepared MgNiO2 and NiO were determined to be 2.2 eV and 3.7 eV, respectively. The first-order transverse optical (TO) phonon modes observed at 536 cm−1 indicated the presence of NiO, which was identified as the primary contributor to the Raman peaks. Further, the photocatalytic degradation of caffeine under visible light achieved a removal efficiency of 95.5% within 180 minutes. The intermediate reactive oxidative species (ROS) leading to MgNiO2 degradation were identified, and their lifetime and diffusion length in the solution were reported. Superoxide (O2−˙) and hydroxyl (˙OH) radicals were identified as the main ROS contributing to caffeine degradation. The electrocatalytic oxygen evolution reaction (OER) indicated a high density of oxygen vacancies in MgNiO2 compared to NiO, suggesting the promoter role of Mg species in the photocatalyst. These insights provide a holistic understanding of MgNiO2 as a catalyst and its pivotal role in green and efficient caffeine photodegradation and the electrocatalytic OER.

Abstract Image

MgNiO2光催化和电催化活性的机理研究:活性氧和氧空位的作用
颗粒状二氧化锰具有良好的电催化活性和可见光下的光降解效率,是一种很有前途的催化剂。本文采用沉淀法合成了颗粒状表面工程MgNiO2纳米颗粒。利用x射线光电子能谱(XPS)分析了高温合成MgNiO2过程中Mg和Ni相互作用形成Mg - Ni - o结构的过程。离子形式存在的Ni3+表明催化剂中存在电荷转移反应。制备的MgNiO2和NiO的带隙分别为2.2 eV和3.7 eV。在536 cm−1下观察到的一阶横向光学(TO)声子模式表明NiO的存在,NiO被确定为拉曼峰的主要贡献者。此外,在可见光下光催化降解咖啡因在180分钟内达到95.5%的去除率。鉴定了导致MgNiO2降解的中间活性氧(ROS),并报道了它们在溶液中的寿命和扩散长度。超氧化物(O2−)和羟基(OH)自由基被确定为促进咖啡因降解的主要活性氧。电催化析氧反应(OER)表明,与NiO相比,MgNiO2中的氧空位密度更高,表明Mg在光催化剂中起促进作用。这些见解提供了MgNiO2作为催化剂的整体理解及其在绿色高效咖啡因光降解和电催化OER中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信