High-Power Photodiodes With Optimized Electrode Design

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Tengmu Chen;Xiaojun Xie;Chao Wei;Wei Pan;Lianshan Yan
{"title":"High-Power Photodiodes With Optimized Electrode Design","authors":"Tengmu Chen;Xiaojun Xie;Chao Wei;Wei Pan;Lianshan Yan","doi":"10.1109/JQE.2025.3597249","DOIUrl":null,"url":null,"abstract":"we demonstrate a back-illuminated flip-chip bonded modified uni-traveling carrier photodiodes by optimizing coplanar waveguide on AlN to improve the bandwidth and output power of the photodiode. The 3-dB bandwidth of the optimized devices increased from 56 GHz to 67 GHz for the <inline-formula> <tex-math>$14~\\mu $ </tex-math></inline-formula>m diameter photodiode, and from 39 GHz to 46 GHz for the <inline-formula> <tex-math>$20~\\mu $ </tex-math></inline-formula>m diameter device, representing an approximate 20% improvement in both cases. Thanks to the improved high-frequency performance of the devices, the photodiodes with diameters of <inline-formula> <tex-math>$22~\\mu $ </tex-math></inline-formula>m and <inline-formula> <tex-math>$14~\\mu $ </tex-math></inline-formula>m exhibit high RF output powers of 23.8 dBm at 30 GHz and 17 dBm at 65 GHz, respectively. The <inline-formula> <tex-math>$14~\\mu $ </tex-math></inline-formula>m diameter PD exhibits low phase noise, with the maximum phase variation of the RF signal remaining within 10 degrees across the photocurrent range of 5 mA to 50 mA. The phase noise of optically generated RF signals, exacerbated by coupling amplitude noise on an optical pulse train to phase noise (AM-PM), exhibits a null at 17 mA. Additionally, the fully packaged module with a <inline-formula> <tex-math>$22~\\mu $ </tex-math></inline-formula>m diameter photodiode exhibits a 3-dB bandwidth of 40 GHz and a high RF output power of 16.6 dBm at 40 GHz. This study lays the groundwork for the development of high-performance microwave photonics system and the generation of ultra-low noise microwave signals.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 5","pages":"1-8"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11121300/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

we demonstrate a back-illuminated flip-chip bonded modified uni-traveling carrier photodiodes by optimizing coplanar waveguide on AlN to improve the bandwidth and output power of the photodiode. The 3-dB bandwidth of the optimized devices increased from 56 GHz to 67 GHz for the $14~\mu $ m diameter photodiode, and from 39 GHz to 46 GHz for the $20~\mu $ m diameter device, representing an approximate 20% improvement in both cases. Thanks to the improved high-frequency performance of the devices, the photodiodes with diameters of $22~\mu $ m and $14~\mu $ m exhibit high RF output powers of 23.8 dBm at 30 GHz and 17 dBm at 65 GHz, respectively. The $14~\mu $ m diameter PD exhibits low phase noise, with the maximum phase variation of the RF signal remaining within 10 degrees across the photocurrent range of 5 mA to 50 mA. The phase noise of optically generated RF signals, exacerbated by coupling amplitude noise on an optical pulse train to phase noise (AM-PM), exhibits a null at 17 mA. Additionally, the fully packaged module with a $22~\mu $ m diameter photodiode exhibits a 3-dB bandwidth of 40 GHz and a high RF output power of 16.6 dBm at 40 GHz. This study lays the groundwork for the development of high-performance microwave photonics system and the generation of ultra-low noise microwave signals.
优化电极设计的大功率光电二极管
通过优化AlN上的共面波导,我们设计了一种背照倒装键合的单行载流子光电二极管,以提高光电二极管的带宽和输出功率。优化后器件的3db带宽从56 GHz增加到67 GHz,对于直径为14~\mu $ m的光电二极管,从39 GHz增加到46 GHz,两种情况下都提高了约20%。由于器件的高频性能得到改善,直径为22~\mu $ m和14~\mu $ m的光电二极管在30 GHz和65 GHz分别表现出23.8 dBm和17 dBm的高射频输出功率。直径为$14~\mu $ m的PD具有较低的相位噪声,在5 mA至50 mA的光电流范围内,RF信号的最大相位变化保持在10度以内。光产生的射频信号的相位噪声,由于光脉冲串上的幅值噪声与相位噪声(AM-PM)的耦合而加剧,在17 mA时表现为零。此外,采用直径22~\mu $ m光电二极管的全封装模块在40ghz时具有3db带宽和16.6 dBm的高RF输出功率。该研究为高性能微波光子学系统的发展和超低噪声微波信号的产生奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Quantum Electronics
IEEE Journal of Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.70
自引率
4.00%
发文量
99
审稿时长
3.0 months
期刊介绍: The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信