Integrated Cooperative Sensing and Two-Way Communications With Half-Duplex Base Stations

IF 4.8 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Dong-Hua Chen;Peifu Peng
{"title":"Integrated Cooperative Sensing and Two-Way Communications With Half-Duplex Base Stations","authors":"Dong-Hua Chen;Peifu Peng","doi":"10.1109/OJVT.2025.3601542","DOIUrl":null,"url":null,"abstract":"In case the dual-functional base station (BS) is only equipped with half-duplex (HD) transceivers, integrated sensing and communications (ISAC) becomes a challenge task especially when the bidirectional communications for each HD user are involved. To address this situation, under the framework of a wireless network with two adjacent cells and with the aid of BSs cooperation, this paper presents two integrated cooperative sensing and bidirectional communication schemes that involve two and four transmission phases, respectively. Power minimization problems under the constrains of bidirectional communication rates and sensing signal to interference plus noise ratios (SINRs) are formulated for optimizing the downlink transmit beamforming vectors, uplink transmit power, and transmission time of each phase. Due to variables coupling, the problems are shown to be non-linear and non-convex. Relying on the successive convex approximation, iterative algorithms that are guaranteed to be convergent are derived to obtain these design variables. Simulations show that both of the proposed schemes well accomplish the bidirectional communications and cooperative target sensing in the considered situation. By contrast, the scheme with two transmission phases possesses lower implementation complexity while the scheme with four transmission phases owns the performance advantage. When uplink non-orthogonal multiple access is further used, the performance difference between the two schemes is reduced substantially.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"2392-2405"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11134088","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11134088/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In case the dual-functional base station (BS) is only equipped with half-duplex (HD) transceivers, integrated sensing and communications (ISAC) becomes a challenge task especially when the bidirectional communications for each HD user are involved. To address this situation, under the framework of a wireless network with two adjacent cells and with the aid of BSs cooperation, this paper presents two integrated cooperative sensing and bidirectional communication schemes that involve two and four transmission phases, respectively. Power minimization problems under the constrains of bidirectional communication rates and sensing signal to interference plus noise ratios (SINRs) are formulated for optimizing the downlink transmit beamforming vectors, uplink transmit power, and transmission time of each phase. Due to variables coupling, the problems are shown to be non-linear and non-convex. Relying on the successive convex approximation, iterative algorithms that are guaranteed to be convergent are derived to obtain these design variables. Simulations show that both of the proposed schemes well accomplish the bidirectional communications and cooperative target sensing in the considered situation. By contrast, the scheme with two transmission phases possesses lower implementation complexity while the scheme with four transmission phases owns the performance advantage. When uplink non-orthogonal multiple access is further used, the performance difference between the two schemes is reduced substantially.
基于半双工基站的集成协同传感和双向通信
在双功能基站(BS)仅配备半双工(HD)收发器的情况下,集成传感与通信(ISAC)成为一项具有挑战性的任务,特别是涉及到每个HD用户的双向通信。针对这一情况,本文在两个相邻小区的无线网络框架下,借助BSs合作,提出了两种集成的协同感知和双向通信方案,分别涉及两个和四个传输阶段。提出了在双向通信速率和传感信噪比(SINRs)约束下的功率最小化问题,以优化各相位的下行发射波束形成矢量、上行发射功率和发射时间。由于变量的耦合,问题是非线性和非凸的。基于连续凸近似,推导出保证收敛的迭代算法来获得这些设计变量。仿真结果表明,在考虑的情况下,两种方案都能很好地实现双向通信和协同目标感知。相比之下,两传输阶段方案具有较低的实现复杂度,而四传输阶段方案具有性能优势。当进一步采用上行非正交多址时,两种方案之间的性能差异大大减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信