{"title":"Biodegradable TMCM-CdCl3/polylactic acid composites for piezoelectric energy harvesting","authors":"Meng Guo, Guan-Zhi Wang, Yunchao Miao, Hai-Run Yang, Chen Zhao, Zhi-Gang Li","doi":"10.1016/j.orgel.2025.107331","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid organic-inorganic perovskites (HOIPs) have attracted extensive attention due to their unique piezoelectric properties, mild synthesis conditions, and structural flexibility. However, the intrinsic rigidity and poor biodegradability of HOIPs limit their applications in flexible wearable devices. In this work, we integrate HOIPs (TMCM-CdCl<sub>3</sub>) (TMCM, trimethylchloromethyl ammonium; Cd, Cadmium; Cl, chloride) with biodegradable polylactic acid (PLA) to fabricate flexible composite films that simultaneously maintain excellent piezoelectric properties, provide the mechanical flexibility needed for wearable devices, and overcome the environmental limitations of conventional non-degradable polymers. The composite film exhibits optimal properties, achieving a short-circuit current (<em>I</em><sub>SC</sub>) of 1.74 μA, an open-circuit voltage (<em>V</em><sub>OC</sub>) of 4.35 V, and a peak power density of 1.47 × 10<sup>−6</sup> W/cm<sup>2</sup> under a 5 N force. Furthermore, the composite film exhibits robust mechanical flexibility and cyclic stability, maintaining stability over 10,000 bending cycles, which positions it as a promising candidate for flexible wearable devices with broad application prospects.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"147 ","pages":"Article 107331"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119925001375","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid organic-inorganic perovskites (HOIPs) have attracted extensive attention due to their unique piezoelectric properties, mild synthesis conditions, and structural flexibility. However, the intrinsic rigidity and poor biodegradability of HOIPs limit their applications in flexible wearable devices. In this work, we integrate HOIPs (TMCM-CdCl3) (TMCM, trimethylchloromethyl ammonium; Cd, Cadmium; Cl, chloride) with biodegradable polylactic acid (PLA) to fabricate flexible composite films that simultaneously maintain excellent piezoelectric properties, provide the mechanical flexibility needed for wearable devices, and overcome the environmental limitations of conventional non-degradable polymers. The composite film exhibits optimal properties, achieving a short-circuit current (ISC) of 1.74 μA, an open-circuit voltage (VOC) of 4.35 V, and a peak power density of 1.47 × 10−6 W/cm2 under a 5 N force. Furthermore, the composite film exhibits robust mechanical flexibility and cyclic stability, maintaining stability over 10,000 bending cycles, which positions it as a promising candidate for flexible wearable devices with broad application prospects.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.