Comparative analysis and optimizing of PV-wind-battery microgrid based on various metaheuristic algorithms

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Eman M. Hosny , M. Sami Soliman , Hala M. Abdel Mageed , Mohamed Mahmoud Samy , Almoataz Y. Abdelaziz
{"title":"Comparative analysis and optimizing of PV-wind-battery microgrid based on various metaheuristic algorithms","authors":"Eman M. Hosny ,&nbsp;M. Sami Soliman ,&nbsp;Hala M. Abdel Mageed ,&nbsp;Mohamed Mahmoud Samy ,&nbsp;Almoataz Y. Abdelaziz","doi":"10.1016/j.rineng.2025.107145","DOIUrl":null,"url":null,"abstract":"<div><div>Developing efficient and inexpensive hybrid microgrids for distant regions presents considerable problems stemming from the intermittent characteristics of renewable energy sources, intricate system integration, and the necessity for a dependable and affordable energy supply. This paper presents a simulation model for a hybrid microgrid that integrates photovoltaic (PV) and wind energy with battery storage, focusing on optimizing system efficiency, dependability, and reducing energy costs. Innovative optimization methods, including the Political Optimization Algorithm (POA), Artificial Electric Field Algorithm (AEFA), Particle Swarm Optimization (PSO), Shuffled Frog Leaping Algorithm (SFLA), and a hybrid PSO-SFLA algorithm, are utilized to ascertain the ideal microgrid architecture. The model employs real-time meteorological data from Zawiet El-Awama village in Matruh, Egypt, representing the inaugural implementation of such a system in this isolated area. A thorough statistical study assesses the efficacy of these optimization strategies, utilizing MATLAB software for simulation and validation of the results. The hybrid PSO-SFLA algorithm exhibits superior performance relative to existing approaches, providing improved convergence speed, solution accuracy, and cost-effectiveness, hence presenting a potential strategy for sustainable microgrid design in remote regions.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 107145"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025032001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient and inexpensive hybrid microgrids for distant regions presents considerable problems stemming from the intermittent characteristics of renewable energy sources, intricate system integration, and the necessity for a dependable and affordable energy supply. This paper presents a simulation model for a hybrid microgrid that integrates photovoltaic (PV) and wind energy with battery storage, focusing on optimizing system efficiency, dependability, and reducing energy costs. Innovative optimization methods, including the Political Optimization Algorithm (POA), Artificial Electric Field Algorithm (AEFA), Particle Swarm Optimization (PSO), Shuffled Frog Leaping Algorithm (SFLA), and a hybrid PSO-SFLA algorithm, are utilized to ascertain the ideal microgrid architecture. The model employs real-time meteorological data from Zawiet El-Awama village in Matruh, Egypt, representing the inaugural implementation of such a system in this isolated area. A thorough statistical study assesses the efficacy of these optimization strategies, utilizing MATLAB software for simulation and validation of the results. The hybrid PSO-SFLA algorithm exhibits superior performance relative to existing approaches, providing improved convergence speed, solution accuracy, and cost-effectiveness, hence presenting a potential strategy for sustainable microgrid design in remote regions.
基于各种元启发式算法的光伏-风力电池微电网对比分析与优化
由于可再生能源的间歇性特点、复杂的系统集成以及可靠和负担得起的能源供应的必要性,为偏远地区开发高效和廉价的混合微电网提出了相当大的问题。基于优化系统效率、可靠性和降低能源成本的目标,提出了光伏、风能与电池储能相结合的混合微电网仿真模型。利用政治优化算法(POA)、人工电场算法(AEFA)、粒子群优化算法(PSO)、洗牌青蛙跳跃算法(SFLA)以及混合PSO-SFLA算法等创新优化方法确定理想的微电网结构。该模型采用了来自埃及Matruh的Zawiet El-Awama村的实时气象数据,这是在这个偏远地区首次实施这种系统。通过全面的统计研究来评估这些优化策略的有效性,并利用MATLAB软件对结果进行仿真和验证。与现有方法相比,混合PSO-SFLA算法表现出优越的性能,提供了更高的收敛速度、求解精度和成本效益,因此为偏远地区的可持续微电网设计提供了潜在的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信