{"title":"Quasi-average predictions and regression to the trend: An application to the M6 financial forecasting competition","authors":"Jose M.G. Vilar","doi":"10.1016/j.ijforecast.2024.12.006","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the winning method that achieved fifth place overall in the M6 financial forecasting competition. The method is based on the idea that, under the efficient market hypothesis, it is often more effective to predict values close to the expected averages of categories and trends than to try to make precise predictions. By leveraging low-variability prediction methods, we forecast both the relative performance of multiple assets and their optimal investment positions. We demonstrate that combining asset-class and temporal averages yields modest but consistent advantages over reference indices. The results highlight the challenges of achieving above-average returns in efficient markets and the potential benefits of low-variability prediction methods in such contexts.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 4","pages":"Pages 1505-1513"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024001341","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the winning method that achieved fifth place overall in the M6 financial forecasting competition. The method is based on the idea that, under the efficient market hypothesis, it is often more effective to predict values close to the expected averages of categories and trends than to try to make precise predictions. By leveraging low-variability prediction methods, we forecast both the relative performance of multiple assets and their optimal investment positions. We demonstrate that combining asset-class and temporal averages yields modest but consistent advantages over reference indices. The results highlight the challenges of achieving above-average returns in efficient markets and the potential benefits of low-variability prediction methods in such contexts.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.