A survey of models and methods used for forecasting when investing in financial markets

IF 7.1 2区 经济学 Q1 ECONOMICS
Kenwin Maung, Norman R. Swanson
{"title":"A survey of models and methods used for forecasting when investing in financial markets","authors":"Kenwin Maung,&nbsp;Norman R. Swanson","doi":"10.1016/j.ijforecast.2025.03.002","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>Makridakis M6 Financial Duathalon</em><span><span> competition builds on prior M-competitions that focus on the properties of point and probabilistic forecasts of random variables<span> by also evaluating investment decisions in financial markets. In particular, the M6 competition evaluates both forecasts and investment outcomes associated with the analysis of a large group of financial time series<span> variables. Given the importance of return and risk forecasting when making investment decisions, a natural question in this context concerns what sorts of methods and models are available for said forecasting and were used by participants of the competition. In this survey, we discuss such methods and models, with a specific focus on the construction of financial time series forecasts using approaches designed for both discrete and continuous time setups and using both small and large (high dimensional and/or high frequency) datasets. Examples covered range from simple random walk-type models of returns to parametric </span></span></span>GARCH<span> and nonparametric integrated volatility methods for forecasting volatility (risk). We also present the results of a novel empirical illustration that underscores the difficulty in forecasting financial returns, even when using so-called big data.</span></span></div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 4","pages":"Pages 1355-1382"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207025000305","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Makridakis M6 Financial Duathalon competition builds on prior M-competitions that focus on the properties of point and probabilistic forecasts of random variables by also evaluating investment decisions in financial markets. In particular, the M6 competition evaluates both forecasts and investment outcomes associated with the analysis of a large group of financial time series variables. Given the importance of return and risk forecasting when making investment decisions, a natural question in this context concerns what sorts of methods and models are available for said forecasting and were used by participants of the competition. In this survey, we discuss such methods and models, with a specific focus on the construction of financial time series forecasts using approaches designed for both discrete and continuous time setups and using both small and large (high dimensional and/or high frequency) datasets. Examples covered range from simple random walk-type models of returns to parametric GARCH and nonparametric integrated volatility methods for forecasting volatility (risk). We also present the results of a novel empirical illustration that underscores the difficulty in forecasting financial returns, even when using so-called big data.
对金融市场投资时用于预测的模型和方法的调查
Makridakis M6金融双人竞赛建立在先前的m竞赛的基础上,该竞赛通过评估金融市场中的投资决策来关注随机变量的点和概率预测的属性。特别是,M6竞赛评估与大量金融时间序列变量分析相关的预测和投资结果。考虑到在做出投资决策时回报和风险预测的重要性,在这种情况下,一个自然的问题是,哪种方法和模型可用于上述预测,并被竞赛参与者使用。在本调查中,我们讨论了这些方法和模型,特别关注金融时间序列预测的构建,使用为离散和连续时间设置设计的方法,并使用小型和大型(高维和/或高频)数据集。例子涵盖了从简单的随机游走型回报模型到参数GARCH和预测波动率(风险)的非参数综合波动率方法。我们还提出了一个新颖的实证说明的结果,强调了预测财务回报的困难,即使使用所谓的大数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信