Design of an electrochemical sensor based on 3-thiophene methanol and 3-methylthiophene supported molecularly imprinted polymer for the sensitive and selective detection of levothyroxine
{"title":"Design of an electrochemical sensor based on 3-thiophene methanol and 3-methylthiophene supported molecularly imprinted polymer for the sensitive and selective detection of levothyroxine","authors":"Emrah Yayan, Dilek Kazıcı, Ebru Kuyumcu Savan","doi":"10.1016/j.microc.2025.115192","DOIUrl":null,"url":null,"abstract":"<div><div>Levothyroxine (L-T4) is the most frequently prescribed drug to treat thyroid hormone deficiency. Herein, a levothyroxine-specific sensor was designed using the molecular imprinting method to increase the selectivity of the target molecule on the electrode surface and prevent interference effects. 3-thiophene methanol (3-TMeOH) and 3-methyl thiophene (3-MT) monomers were electro-polymerized as molecularly imprinted polymer (MIP) on the surface of a glassy carbon electrode (GCE) in the presence of L-T4. Gaps were created on the surface of the designed electrode to fit the target molecule by removing L-T4 molecules. This way, L-T4-specific selective structures were formed on the sensors' surface. The results showed that under optimized conditions, the fabricated modified sensor (3-TMeOH/3-MT@MIP/GCE) exhibited a linear response in the concentration range of 1.0–5.7 μM with limit of determination, limit of quantitation, and sensitivity values <!--> <!-->of 1.83 nM, 5.50 nM, and 0.0023 <span><span>A.L.mmol<sup>−1</sup>.cm</span><svg><path></path></svg></span><sup>−2</sup>, respectively. The analytical method validation process of the voltammetric determination method using the sensor selective to L-T4 was completed following the method's intended use. The designed modified sensor exhibited high sensitivity, repeatability, excellent stability, selectivity, and high precision and accuracy.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"218 ","pages":"Article 115192"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X25025408","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Levothyroxine (L-T4) is the most frequently prescribed drug to treat thyroid hormone deficiency. Herein, a levothyroxine-specific sensor was designed using the molecular imprinting method to increase the selectivity of the target molecule on the electrode surface and prevent interference effects. 3-thiophene methanol (3-TMeOH) and 3-methyl thiophene (3-MT) monomers were electro-polymerized as molecularly imprinted polymer (MIP) on the surface of a glassy carbon electrode (GCE) in the presence of L-T4. Gaps were created on the surface of the designed electrode to fit the target molecule by removing L-T4 molecules. This way, L-T4-specific selective structures were formed on the sensors' surface. The results showed that under optimized conditions, the fabricated modified sensor (3-TMeOH/3-MT@MIP/GCE) exhibited a linear response in the concentration range of 1.0–5.7 μM with limit of determination, limit of quantitation, and sensitivity values of 1.83 nM, 5.50 nM, and 0.0023 A.L.mmol−1.cm−2, respectively. The analytical method validation process of the voltammetric determination method using the sensor selective to L-T4 was completed following the method's intended use. The designed modified sensor exhibited high sensitivity, repeatability, excellent stability, selectivity, and high precision and accuracy.
期刊介绍:
The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field.
Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.