On the weak Sard property

IF 1.2 3区 数学 Q1 MATHEMATICS
Roman V. Dribas, Andrew S. Golovnev, Nikolay A. Gusev
{"title":"On the weak Sard property","authors":"Roman V. Dribas,&nbsp;Andrew S. Golovnev,&nbsp;Nikolay A. Gusev","doi":"10.1016/j.jmaa.2025.130022","DOIUrl":null,"url":null,"abstract":"<div><div>If <span><math><mi>f</mi><mo>:</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><mi>R</mi></math></span> is of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> then Sard's theorem implies that <em>f</em> has the following <em>relaxed Sard property</em>: the image under <em>f</em> of the Lebesgue measure restricted to the critical set of <em>f</em> is a singular measure. We show that for <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> functions with <span><math><mi>α</mi><mo>&lt;</mo><mn>1</mn></math></span> this property is strictly stronger than the <em>weak Sard property</em> introduced by Alberti, Bianchini and Crippa, while for any monotone continuous function these two properties are equivalent.</div><div>We also show that even in the one-dimensional setting Hölder regularity is not sufficient for the relaxed Sard property.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130022"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008030","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

If f:[0,1]2R is of class C2 then Sard's theorem implies that f has the following relaxed Sard property: the image under f of the Lebesgue measure restricted to the critical set of f is a singular measure. We show that for C1,α functions with α<1 this property is strictly stronger than the weak Sard property introduced by Alberti, Bianchini and Crippa, while for any monotone continuous function these two properties are equivalent.
We also show that even in the one-dimensional setting Hölder regularity is not sufficient for the relaxed Sard property.
弱Sard性质
如果f:[0,1]2→R属于C2类,则Sard定理表明f具有以下松弛的Sard性质:限定于f的临界集的Lebesgue测度在f下的像是一个奇异测度。我们证明了对于具有α<;1的C1,α函数,这个性质严格强于由Alberti, Bianchini和Crippa引入的弱Sard性质,而对于任何单调连续函数,这两个性质是等价的。我们还表明,即使在一维情况下Hölder正则性对于松弛Sard性质也是不充分的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信