An explicitly solvable NLS model with discontinuous standing waves

IF 2.3 2区 数学 Q1 MATHEMATICS
Riccardo Adami , Filippo Boni , Takaaki Nakamura , Alice Ruighi
{"title":"An explicitly solvable NLS model with discontinuous standing waves","authors":"Riccardo Adami ,&nbsp;Filippo Boni ,&nbsp;Takaaki Nakamura ,&nbsp;Alice Ruighi","doi":"10.1016/j.jde.2025.113746","DOIUrl":null,"url":null,"abstract":"<div><div>We study the NLS Equation on the line with a point interaction given by the superposition of an attractive delta potential with a dipole interaction, in the cases of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-subcritical and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-critical nonlinearity.</div><div>For a subcritical nonlinearity we prove the existence and the uniqueness of Ground States at any mass. If the mass exceeds an explicit threshold, then there exists a positive excited state too.</div><div>For the critical nonlinearity we prove that Ground States exist only in a specific interval of masses, while in a different interval excited states exist. We provide the value of the optimal constant in the Gagliardo-Nirenberg estimate and describe in the dipole case the branches of the stationary states as the strength of the interaction varies.</div><div>Since all stationary states are explicitly computed, ours is a solvable model involving a non-standard interplay of a nonlinearity with a point interaction.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113746"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007739","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the NLS Equation on the line with a point interaction given by the superposition of an attractive delta potential with a dipole interaction, in the cases of L2-subcritical and L2-critical nonlinearity.
For a subcritical nonlinearity we prove the existence and the uniqueness of Ground States at any mass. If the mass exceeds an explicit threshold, then there exists a positive excited state too.
For the critical nonlinearity we prove that Ground States exist only in a specific interval of masses, while in a different interval excited states exist. We provide the value of the optimal constant in the Gagliardo-Nirenberg estimate and describe in the dipole case the branches of the stationary states as the strength of the interaction varies.
Since all stationary states are explicitly computed, ours is a solvable model involving a non-standard interplay of a nonlinearity with a point interaction.
具有不连续驻波的显解NLS模型
在l2 -亚临界和l2 -临界非线性情况下,研究了由吸引δ势与偶极子相互作用叠加而成的点相互作用直线上的NLS方程。对于亚临界非线性,我们证明了任意质量下基态的存在性和唯一性。如果质量超过一个明确的阈值,那么也存在一个正激发态。对于临界非线性,我们证明了基态只存在于特定的质量区间内,而激发态存在于不同的质量区间内。我们给出了Gagliardo-Nirenberg估计中最优常数的值,并描述了偶极子情况下随相互作用强度变化的稳态分支。由于所有的稳态都是显式计算的,因此我们的模型是一个可解的模型,涉及非线性与点相互作用的非标准相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信