Morse index and non-degeneracy of double-tower solutions for prescribed scalar curvature problem

IF 2.3 2区 数学 Q1 MATHEMATICS
Yuxia Guo , Yichen Hu , Shaolong Peng
{"title":"Morse index and non-degeneracy of double-tower solutions for prescribed scalar curvature problem","authors":"Yuxia Guo ,&nbsp;Yichen Hu ,&nbsp;Shaolong Peng","doi":"10.1016/j.jde.2025.113751","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the following prescribed scalar curvature equations in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>:<span><span><span>(0.1)</span><span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>K</mi><mo>(</mo><mo>|</mo><mi>y</mi><mo>|</mo><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mtext></mtext><mi>u</mi><mo>&gt;</mo><mn>0</mn><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mtext></mtext><mi>u</mi><mo>∈</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>K</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span> is a positive function, <span><math><mi>N</mi><mo>≥</mo><mn>5</mn></math></span> and <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>. We are concerned with the solutions which are invariant under some non-trivial sub-group of <span><math><mi>O</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span> to the above problem (we call them double-tower solutions). We first prove a non-degeneracy result for the positive double-tower solutions. As an application, we consider an eigenvalue problem related to prescribed scalar curvature equations and investigate the properties of the eigenvalues. And we compute the Morse index of the double-tower solutions. Our proof is based on the local Pohozaev identities, blow-up analysis, and the properties of the Green function.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113751"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007788","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the following prescribed scalar curvature equations in RN:(0.1)Δu=K(|y|)u21,u>0 in RN,uD1,2(RN), where K(r) is a positive function, N5 and 2=2NN2. We are concerned with the solutions which are invariant under some non-trivial sub-group of O(3) to the above problem (we call them double-tower solutions). We first prove a non-degeneracy result for the positive double-tower solutions. As an application, we consider an eigenvalue problem related to prescribed scalar curvature equations and investigate the properties of the eigenvalues. And we compute the Morse index of the double-tower solutions. Our proof is based on the local Pohozaev identities, blow-up analysis, and the properties of the Green function.
给定标量曲率问题双塔解的莫尔斯指数和非简并性
我们考虑下列规定的标量曲率方程在RN中:(0.1)−Δu=K(|y|)u2 1,u>;0在RN中,u∈D1,2(RN),其中K(r)是一个正函数,N≥5且2 =2NN−2。我们研究了上述问题在O(3)的非平凡子群下的不变量解(我们称之为双塔解)。首先证明了双塔正解的一个非简并性结果。作为应用,我们考虑了与规定标量曲率方程有关的特征值问题,并研究了特征值的性质。并计算了双塔解的摩尔斯指数。我们的证明是基于局部Pohozaev恒等式、爆破分析和格林函数的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信