Optimal decay of eigenvector overlap for non-Hermitian random matrices

IF 1.6 2区 数学 Q1 MATHEMATICS
Giorgio Cipolloni , László Erdős , Yuanyuan Xu
{"title":"Optimal decay of eigenvector overlap for non-Hermitian random matrices","authors":"Giorgio Cipolloni ,&nbsp;László Erdős ,&nbsp;Yuanyuan Xu","doi":"10.1016/j.jfa.2025.111180","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the standard overlap <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>〈</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>〉</mo><mo>〈</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>〉</mo></math></span> of any bi-orthogonal family of left and right eigenvectors of a large random matrix <em>X</em> with centred i.i.d. entries and we prove that it decays as an inverse second power of the distance between the corresponding eigenvalues. This extends similar results for the complex Gaussian ensemble from Bourgade and Dubach <span><span>[15]</span></span>, as well as Benaych-Georges and Zeitouni <span><span>[13]</span></span>, to any i.i.d. matrix ensemble in both symmetry classes. As a main tool, we prove a two-resolvent local law for the Hermitisation of <em>X</em> uniformly in the spectrum with optimal decay rate and optimal dependence on the density near the spectral edge.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 1","pages":"Article 111180"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003623","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the standard overlap Oij:=rj,rilj,li of any bi-orthogonal family of left and right eigenvectors of a large random matrix X with centred i.i.d. entries and we prove that it decays as an inverse second power of the distance between the corresponding eigenvalues. This extends similar results for the complex Gaussian ensemble from Bourgade and Dubach [15], as well as Benaych-Georges and Zeitouni [13], to any i.i.d. matrix ensemble in both symmetry classes. As a main tool, we prove a two-resolvent local law for the Hermitisation of X uniformly in the spectrum with optimal decay rate and optimal dependence on the density near the spectral edge.
非厄米随机矩阵特征向量重叠的最优衰减
我们考虑一个大随机矩阵X的任意双正交的左右特征向量族的标准重叠Oij:= < rj,ri > < lj,li >,我们证明了它衰减为对应特征值之间距离的倒数次幂。这将复高斯系综的类似结果从Bourgade和Dubach[15],以及Benaych-Georges和Zeitouni[13]推广到两种对称类中的任何i.i.d矩阵系综。作为一种主要工具,我们证明了X在光谱中均匀地具有最佳衰减率和最优依赖于谱边附近密度的双解局域律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信