Chengwei Zhang , Rebecca Sikkema , Claire Shi , Dalue Tang , Kaiyuan Shi , Igor Zhitomirsky
{"title":"New horizons in synthesis, functionalization, and deposition of advanced materials using multifunctional organic alkalizers","authors":"Chengwei Zhang , Rebecca Sikkema , Claire Shi , Dalue Tang , Kaiyuan Shi , Igor Zhitomirsky","doi":"10.1016/j.cis.2025.103666","DOIUrl":null,"url":null,"abstract":"<div><div>This review describes new strategies in the use of multifunctional organic alkalizers (OA) for the fabrication of advanced functional materials. OA facilitate solubilization and delivery of poorly solubilized drugs through the formation of drug-OA complexes and supramolecular gels. OA are applied for the synthesis of materials for biomedical, energy storage, catalytic, photovoltaic, sensor, and electronic applications. The synthesis of nanocrystals with controlled size, crystal phase, shape, and tunable facets in the presence of OA-capping agents is described. The synthesis of materials for energy storage in batteries and supercapacitors using OA or adding OA to electrolytes results in improved power-energy characteristics and cyclic stability. The multifunctional OA allow the fabrication of advanced bioceramics and biocements, novel supramolecular gels, surface modification of materials for advanced catalytic, water purification, and sensor applications. Various challenges in the dispersion of functional nanoparticles are addressed for colloidal manufacturing. The ability of the OA to form supramolecular gels paves the way for the development of novel functional materials. New strategies in the solubilization of polymers and other functional materials open an avenue for the development of advanced electrodeposition methods for the deposition of polymer and composite films. Fundamental mechanisms and future research avenues are described.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"346 ","pages":"Article 103666"},"PeriodicalIF":19.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625002775","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This review describes new strategies in the use of multifunctional organic alkalizers (OA) for the fabrication of advanced functional materials. OA facilitate solubilization and delivery of poorly solubilized drugs through the formation of drug-OA complexes and supramolecular gels. OA are applied for the synthesis of materials for biomedical, energy storage, catalytic, photovoltaic, sensor, and electronic applications. The synthesis of nanocrystals with controlled size, crystal phase, shape, and tunable facets in the presence of OA-capping agents is described. The synthesis of materials for energy storage in batteries and supercapacitors using OA or adding OA to electrolytes results in improved power-energy characteristics and cyclic stability. The multifunctional OA allow the fabrication of advanced bioceramics and biocements, novel supramolecular gels, surface modification of materials for advanced catalytic, water purification, and sensor applications. Various challenges in the dispersion of functional nanoparticles are addressed for colloidal manufacturing. The ability of the OA to form supramolecular gels paves the way for the development of novel functional materials. New strategies in the solubilization of polymers and other functional materials open an avenue for the development of advanced electrodeposition methods for the deposition of polymer and composite films. Fundamental mechanisms and future research avenues are described.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.