Electrospun bioactive fibers of PCL/Starch loaded with bioglass nanoparticles with potential application in bone tissue engineering: An in vitro and in vivo study

IF 4.9 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Alexander Cordoba , Deborah Cordova , Felipe Gutierrez , Marcela Saavedra , Daniel Canales , Sebastián Zapata , Diana G. Zarate-Triviño , Juan José Martinez-Sanmiguel , Carlos David Grande-Tovar , Carlos Humberto Valencia-Llano , Viviana Moreno-Serna , Paula A. Zapata
{"title":"Electrospun bioactive fibers of PCL/Starch loaded with bioglass nanoparticles with potential application in bone tissue engineering: An in vitro and in vivo study","authors":"Alexander Cordoba ,&nbsp;Deborah Cordova ,&nbsp;Felipe Gutierrez ,&nbsp;Marcela Saavedra ,&nbsp;Daniel Canales ,&nbsp;Sebastián Zapata ,&nbsp;Diana G. Zarate-Triviño ,&nbsp;Juan José Martinez-Sanmiguel ,&nbsp;Carlos David Grande-Tovar ,&nbsp;Carlos Humberto Valencia-Llano ,&nbsp;Viviana Moreno-Serna ,&nbsp;Paula A. Zapata","doi":"10.1016/j.jddst.2025.107496","DOIUrl":null,"url":null,"abstract":"<div><div>Regenerating damaged bone tissue is a clinical challenge that can be tackled through bone tissue engineering using biopolymers and bioactive particles. This study developed bioactive electrospun fibers by incorporating 5 wt% bioglass nanoparticles (BG) into a polycaprolactone (PCL) and starch solution. The morphology, water retention, degradation, thermal and mechanical properties, and <em>in vitro</em> bioactivity of the fibers were examined. The fibers had diameters ranging from 311 to 438 nm. The PCL/Starch/BG scaffolds showed a 1700 % increase in water absorption after 24 h and a 37 % degradation rate, higher than neat PCL. Thermal analysis revealed that starch increased crystallinity by 9 %, while BG reduced it by 7 %, resulting in intermediate crystallinity in the composite scaffold. The incorporation of starch, BG, or both into the PCL scaffolds reduced Young's modulus and tensile strength but increased the elongation at break compared to pure PCL. After 14 days, SEM-EDS, FT-IR, and XRD analyses indicated a biomineralization increase in PCL/Starch/BG scaffolds, confirming the synergistic effect of starch and bioglass nanoparticles in enhancing bioactivity. The scaffolds promoted the cell adhesion and viability of MG-63 osteoblast-like cells. <em>In vivo</em>, the scaffolds showed superior biocompatibility and bioresorbability after 60 days of subdermal implantation in Wistar rats. These bioactive, biocompatible, and bioresorbable PCL/Starch/BG scaffolds show promise for bone tissue engineering applications.</div></div>","PeriodicalId":15600,"journal":{"name":"Journal of Drug Delivery Science and Technology","volume":"114 ","pages":"Article 107496"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Delivery Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1773224725008998","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Regenerating damaged bone tissue is a clinical challenge that can be tackled through bone tissue engineering using biopolymers and bioactive particles. This study developed bioactive electrospun fibers by incorporating 5 wt% bioglass nanoparticles (BG) into a polycaprolactone (PCL) and starch solution. The morphology, water retention, degradation, thermal and mechanical properties, and in vitro bioactivity of the fibers were examined. The fibers had diameters ranging from 311 to 438 nm. The PCL/Starch/BG scaffolds showed a 1700 % increase in water absorption after 24 h and a 37 % degradation rate, higher than neat PCL. Thermal analysis revealed that starch increased crystallinity by 9 %, while BG reduced it by 7 %, resulting in intermediate crystallinity in the composite scaffold. The incorporation of starch, BG, or both into the PCL scaffolds reduced Young's modulus and tensile strength but increased the elongation at break compared to pure PCL. After 14 days, SEM-EDS, FT-IR, and XRD analyses indicated a biomineralization increase in PCL/Starch/BG scaffolds, confirming the synergistic effect of starch and bioglass nanoparticles in enhancing bioactivity. The scaffolds promoted the cell adhesion and viability of MG-63 osteoblast-like cells. In vivo, the scaffolds showed superior biocompatibility and bioresorbability after 60 days of subdermal implantation in Wistar rats. These bioactive, biocompatible, and bioresorbable PCL/Starch/BG scaffolds show promise for bone tissue engineering applications.

Abstract Image

生物玻璃纳米粒子负载PCL/淀粉电纺丝生物活性纤维在骨组织工程中的潜在应用:体外和体内研究
再生受损骨组织是一项临床挑战,可以通过使用生物聚合物和生物活性颗粒的骨组织工程来解决。本研究通过将5%的生物玻璃纳米颗粒(BG)掺入聚己内酯(PCL)和淀粉溶液中,开发出具有生物活性的静电纺丝纤维。考察了纤维的形态、保水性能、降解性能、热力学性能和体外生物活性。纤维的直径从311到438纳米不等。与纯PCL相比,24 h后PCL/Starch/BG支架的吸水率提高了170%,降解率提高了37%。热分析表明,淀粉的结晶度提高了9%,而BG的结晶度降低了7%,导致复合支架的结晶度处于中间水平。与纯PCL相比,淀粉、BG或两者同时掺入PCL支架降低了杨氏模量和抗拉强度,但增加了断裂伸长率。14天后,SEM-EDS, FT-IR和XRD分析表明PCL/Starch/BG支架的生物矿化作用增加,证实了淀粉和生物玻璃纳米颗粒在增强生物活性方面的协同作用。支架可促进MG-63成骨样细胞的粘附和活力。在Wistar大鼠皮下植入60天后,支架在体内表现出良好的生物相容性和生物可吸收性。这些具有生物活性、生物相容性和生物可吸收性的PCL/淀粉/BG支架在骨组织工程应用中具有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
8.00%
发文量
879
审稿时长
94 days
期刊介绍: The Journal of Drug Delivery Science and Technology is an international journal devoted to drug delivery and pharmaceutical technology. The journal covers all innovative aspects of all pharmaceutical dosage forms and the most advanced research on controlled release, bioavailability and drug absorption, nanomedicines, gene delivery, tissue engineering, etc. Hot topics, related to manufacturing processes and quality control, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信