YAM2 2.0: Yet another M2 with on-shell mass constraints and beyond

IF 3.4 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chan Beom Park
{"title":"YAM2 2.0: Yet another M2 with on-shell mass constraints and beyond","authors":"Chan Beom Park","doi":"10.1016/j.cpc.2025.109835","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new version of YAM2 (“Yet Another <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> calculator”), a C++ library for computing the <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> class of kinematic variables widely used in collider phenomenology with invisible particles. The main upgrade is the incorporation of new kinematic constraints: on-shell mass conditions implemented as equality constraints and vertex-reconstruction information as inequality constraints. The former enables precise treatment of the antler decay topology and generalizations such as <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn><mrow><mi>Cons</mi></mrow></mrow></msub></math></span>-like variables, while the latter extends applicability to cases where parent-particle flight directions can be inferred. Both extensions are implemented and validated within the sequential quadratic programming framework, ensuring robust performance in large-scale Monte Carlo studies. Additional improvements include CMake build support, extended example codes, and general code optimizations. With these updates, YAM2 2.0 provides a more versatile and user-friendly toolkit for collider analyses at both hadron and lepton colliders.</div></div><div><h3>New version program summary</h3><div><em>Program Title:</em> YAM2</div><div><em>CPC Library link to program files:</em> <span><span>https://doi.org/10.17632/4g7wfd5fpb.2</span><svg><path></path></svg></span></div><div><em>Developer's repository link:</em> <span><span>https://github.com/cbpark/YAM2</span><svg><path></path></svg></span></div><div><em>Licensing provisions:</em> BSD 3-clause</div><div><em>Programming language:</em> C++</div><div><em>Journal reference of previous version:</em> Comput. Phys. Commun. 264 (2021) 107967</div><div><em>Does the new version supersede the previous version?:</em> Yes</div><div><em>Reasons for the new version:</em> YAM2 2.0 incorporates recent theoretical advances in <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> variables, including on-shell mass and vertex-reconstruction constraints, to ensure consistency with the latest developments in the field. In parallel, user-driven improvements such as CMake support, example codes, ROOT integration, and performance optimizations enhance usability and portability. These updates make the package both more powerful and easier to use for collider analyses at hadron and lepton colliders.</div><div><em>Summary of revisions:</em> One of the main enhancements in the present version is the incorporation of additional kinematic constraints into the <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> variables: on-shell mass conditions implemented as equality constraints and vertex-reconstruction information realized as inequality constraints. The on-shell mass condition is particularly relevant for handling the so-called antler decay topology, where a parent particle <em>Y</em> decays via <span><math><mi>Y</mi><mo>→</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>→</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. In this decay topology, <em>Y</em> is an on-shell resonance, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are intermediate states, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are visible particles, and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> (<span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>) are invisible particles [1]. This corresponds to the <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn><mrow><mi>Cons</mi></mrow></mrow></msub></math></span> variable introduced in Ref. [2], which was proposed as a tool for searching for heavy resonances decaying semi-invisibly at hadron colliders. Since the center-of-mass energy is fixed at lepton colliders such as the Belle experiment at SuperKEKB and at future lepton colliders, the same construction can naturally be applied to pair-production decay topologies in these environments, as discussed in Ref. [3, 4]. In this case, the longitudinal component of the missing momentum must also be taken into account, and this functionality has been fully implemented in the new version.</div><div>Furthermore, recent studies have shown that the <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> variables can be extended by incorporating constraints on the parent particles' flight directions, inferred from vertex-reconstruction information [5]. These have been implemented in the new version as inequality constraints and successfully tested.</div><div>Minor improvements to the code base include:<ul><li><span>•</span><span><div>Additional example codes for exploring and testing the basic functionalities.</div></span></li><li><span>•</span><span><div>Support for CMake-based builds, improving portability and integration with external projects.</div></span></li><li><span>•</span><span><div>Instructions for integrating YAM2 into analysis codes based on the ROOT framework [6].</div></span></li><li><span>•</span><span><div>General code cleanup and performance optimizations.</div></span></li></ul> As this version introduces breaking changes, users are advised to update their analysis codes to ensure full compatibility.</div><div><em>Nature of problem:</em> The <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> variables form a family of kinematic observables that generalize the well-known stransverse mass <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>T</mi><mn>2</mn></mrow></msub></math></span> [7] by incorporating additional kinematic constraints, such as on-shell mass conditions, in events with pair-produced particles decaying semi-invisibly [8]. In contrast to <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>T</mi><mn>2</mn></mrow></msub></math></span>, which relies solely on transverse kinematics, the <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> framework can exploit the full event topology by including longitudinal momentum components when suitable constraints are available. The computation of the <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> variables is formulated as a constrained numerical minimization, where the invisible momenta are varied subject to the measured missing transverse momentum and the imposed mass-shell conditions. Consequently, suitable numerical algorithms must be adopted, with attention to both efficiency and computational cost.</div><div><em>Solution method:</em> The calculation of the <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> variables is formulated as a constrained minimization problem, where the invisible momenta are treated as free parameters subject to the measured missing transverse momentum and additional kinematic conditions, such as on-shell mass constraints. This requires minimizing an objective function defined by the <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> variables while simultaneously satisfying nonlinear equality and inequality constraints. Among available constrained optimization methods, YAM2 employs sequential quadratic programming combined with a derivative-based quasi-Newton algorithm. This approach has proven to be both robust and efficient in locating local minima when derivative information is available, which is essential for large-scale Monte Carlo event analyses [9]. The implementation relies on the publicly available NLopt library [10], which offers a broad collection of optimization routines for nonlinear problems. In the current version of YAM2, the set of available algorithms has been extended to include alternative methods, such as the augmented Lagrangian approach, thereby giving users greater flexibility to balance numerical stability, accuracy, and computational cost according to the needs of their analysis.</div></div><div><h3>References</h3><div><ul><li><span> <!-->[1]</span><span><div>T. Han, I.W. Kim, J. Song, Phys. Lett. B 693 (2010) 575–579, <span><span>arXiv:0906.5009 [hep-ph]</span><svg><path></path></svg></span>.</div></span></li><li><span> <!-->[2]</span><span><div>P. Konar, A.K. Swain, Phys. Rev. D 93 (1) (2016) 015021, <span><span>arXiv:1509.00298 [hep-ph]</span><svg><path></path></svg></span>.</div></span></li><li><span> <!-->[3]</span><span><div>D. Guadagnoli, C.B. Park, F. Tenchini, Phys. Lett. B 822 (2021) 136701, <span><span>arXiv:2106.16236 [hep-ph]</span><svg><path></path></svg></span>.</div></span></li><li><span> <!-->[4]</span><span><div>C.B. Park, New Phys. Sae Mulli 73 (8) (2023) 664–674.</div></span></li><li><span> <!-->[5]</span><span><div>G. de Marino, D. Guadagnoli, C.B. Park, K. Trabelsi, Phys. Rev. D 107 (5) (2023) 055010, <span><span>arXiv:2209.03387 [hep-ph]</span><svg><path></path></svg></span>.</div></span></li><li><span> <!-->[6]</span><span><div>R. Brun, F. Rademakers, Nucl. Instrum. Methods. A 389 (1–2) (1997) 81–86.</div></span></li><li><span> <!-->[7]</span><span><div>C.G. Lester, D.J. Summers, Phys. Lett. B 463 (1999) 99–103, <span><span>arXiv:hep-ph/9906349 [hep-ph]</span><svg><path></path></svg></span>.</div></span></li><li><span> <!-->[8]</span><span><div>W.S. Cho, J.S. Gainer, D. Kim, K.T. Matchev, F. Moortgat, L. Pape, M. Park, J. High Energy Phys. 08 (2014) 070, <span><span>arXiv:1401.1449 [hep-ph]</span><svg><path></path></svg></span>.</div></span></li><li><span> <!-->[9]</span><span><div>C.B. Park, Comput. Phys. Commun. 264 (2021) 107967, <span><span>arXiv:2007.15537 [hep-ph]</span><svg><path></path></svg></span>.</div></span></li><li><span>[10]</span><span><div>S.G. Johnson, The NLopt nonlinear-optimization package, <span><span>https://github.com/stevengj/nlopt</span><svg><path></path></svg></span>.</div></span></li></ul></div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"317 ","pages":"Article 109835"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525003376","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new version of YAM2 (“Yet Another M2 calculator”), a C++ library for computing the M2 class of kinematic variables widely used in collider phenomenology with invisible particles. The main upgrade is the incorporation of new kinematic constraints: on-shell mass conditions implemented as equality constraints and vertex-reconstruction information as inequality constraints. The former enables precise treatment of the antler decay topology and generalizations such as M2Cons-like variables, while the latter extends applicability to cases where parent-particle flight directions can be inferred. Both extensions are implemented and validated within the sequential quadratic programming framework, ensuring robust performance in large-scale Monte Carlo studies. Additional improvements include CMake build support, extended example codes, and general code optimizations. With these updates, YAM2 2.0 provides a more versatile and user-friendly toolkit for collider analyses at both hadron and lepton colliders.

New version program summary

Program Title: YAM2
CPC Library link to program files: https://doi.org/10.17632/4g7wfd5fpb.2
Developer's repository link: https://github.com/cbpark/YAM2
Licensing provisions: BSD 3-clause
Programming language: C++
Journal reference of previous version: Comput. Phys. Commun. 264 (2021) 107967
Does the new version supersede the previous version?: Yes
Reasons for the new version: YAM2 2.0 incorporates recent theoretical advances in M2 variables, including on-shell mass and vertex-reconstruction constraints, to ensure consistency with the latest developments in the field. In parallel, user-driven improvements such as CMake support, example codes, ROOT integration, and performance optimizations enhance usability and portability. These updates make the package both more powerful and easier to use for collider analyses at hadron and lepton colliders.
Summary of revisions: One of the main enhancements in the present version is the incorporation of additional kinematic constraints into the M2 variables: on-shell mass conditions implemented as equality constraints and vertex-reconstruction information realized as inequality constraints. The on-shell mass condition is particularly relevant for handling the so-called antler decay topology, where a parent particle Y decays via YA1+A2a1B1+a2B2. In this decay topology, Y is an on-shell resonance, Ai are intermediate states, ai are visible particles, and Bi (i=1,2) are invisible particles [1]. This corresponds to the M2Cons variable introduced in Ref. [2], which was proposed as a tool for searching for heavy resonances decaying semi-invisibly at hadron colliders. Since the center-of-mass energy is fixed at lepton colliders such as the Belle experiment at SuperKEKB and at future lepton colliders, the same construction can naturally be applied to pair-production decay topologies in these environments, as discussed in Ref. [3, 4]. In this case, the longitudinal component of the missing momentum must also be taken into account, and this functionality has been fully implemented in the new version.
Furthermore, recent studies have shown that the M2 variables can be extended by incorporating constraints on the parent particles' flight directions, inferred from vertex-reconstruction information [5]. These have been implemented in the new version as inequality constraints and successfully tested.
Minor improvements to the code base include:
  • Additional example codes for exploring and testing the basic functionalities.
  • Support for CMake-based builds, improving portability and integration with external projects.
  • Instructions for integrating YAM2 into analysis codes based on the ROOT framework [6].
  • General code cleanup and performance optimizations.
As this version introduces breaking changes, users are advised to update their analysis codes to ensure full compatibility.
Nature of problem: The M2 variables form a family of kinematic observables that generalize the well-known stransverse mass MT2 [7] by incorporating additional kinematic constraints, such as on-shell mass conditions, in events with pair-produced particles decaying semi-invisibly [8]. In contrast to MT2, which relies solely on transverse kinematics, the M2 framework can exploit the full event topology by including longitudinal momentum components when suitable constraints are available. The computation of the M2 variables is formulated as a constrained numerical minimization, where the invisible momenta are varied subject to the measured missing transverse momentum and the imposed mass-shell conditions. Consequently, suitable numerical algorithms must be adopted, with attention to both efficiency and computational cost.
Solution method: The calculation of the M2 variables is formulated as a constrained minimization problem, where the invisible momenta are treated as free parameters subject to the measured missing transverse momentum and additional kinematic conditions, such as on-shell mass constraints. This requires minimizing an objective function defined by the M2 variables while simultaneously satisfying nonlinear equality and inequality constraints. Among available constrained optimization methods, YAM2 employs sequential quadratic programming combined with a derivative-based quasi-Newton algorithm. This approach has proven to be both robust and efficient in locating local minima when derivative information is available, which is essential for large-scale Monte Carlo event analyses [9]. The implementation relies on the publicly available NLopt library [10], which offers a broad collection of optimization routines for nonlinear problems. In the current version of YAM2, the set of available algorithms has been extended to include alternative methods, such as the augmented Lagrangian approach, thereby giving users greater flexibility to balance numerical stability, accuracy, and computational cost according to the needs of their analysis.

References

  •  [1]
    T. Han, I.W. Kim, J. Song, Phys. Lett. B 693 (2010) 575–579, arXiv:0906.5009 [hep-ph].
  •  [2]
    P. Konar, A.K. Swain, Phys. Rev. D 93 (1) (2016) 015021, arXiv:1509.00298 [hep-ph].
  •  [3]
    D. Guadagnoli, C.B. Park, F. Tenchini, Phys. Lett. B 822 (2021) 136701, arXiv:2106.16236 [hep-ph].
  •  [4]
    C.B. Park, New Phys. Sae Mulli 73 (8) (2023) 664–674.
  •  [5]
    G. de Marino, D. Guadagnoli, C.B. Park, K. Trabelsi, Phys. Rev. D 107 (5) (2023) 055010, arXiv:2209.03387 [hep-ph].
  •  [6]
    R. Brun, F. Rademakers, Nucl. Instrum. Methods. A 389 (1–2) (1997) 81–86.
  •  [7]
    C.G. Lester, D.J. Summers, Phys. Lett. B 463 (1999) 99–103, arXiv:hep-ph/9906349 [hep-ph].
  •  [8]
    W.S. Cho, J.S. Gainer, D. Kim, K.T. Matchev, F. Moortgat, L. Pape, M. Park, J. High Energy Phys. 08 (2014) 070, arXiv:1401.1449 [hep-ph].
  •  [9]
    C.B. Park, Comput. Phys. Commun. 264 (2021) 107967, arXiv:2007.15537 [hep-ph].
  • [10]
    S.G. Johnson, The NLopt nonlinear-optimization package, https://github.com/stevengj/nlopt.
YAM2 2.0:另一个具有壳层质量约束的M2
我们提出了一个新版本的YAM2(“Yet Another M2 calculator”),这是一个c++库,用于计算M2类运动变量,广泛用于具有不可见粒子的对撞机现象学。主要的升级是引入了新的运动学约束:壳上质量条件作为等式约束,顶点重构信息作为不等式约束。前者可以精确处理鹿角衰变拓扑和一般化,如M2Cons-like变量,而后者扩展了适用于可以推断父粒子飞行方向的情况。这两个扩展都在顺序二次规划框架内实现和验证,确保了在大规模蒙特卡罗研究中的鲁棒性能。其他改进包括CMake构建支持、扩展示例代码和一般代码优化。有了这些更新,YAM2 2.0为强子和轻子对撞机的对撞机分析提供了一个更通用和用户友好的工具包。新版本程序摘要程序标题:YAM2CPC库链接到程序文件:https://doi.org/10.17632/4g7wfd5fpb.2Developer's存储库链接:https://github.com/cbpark/YAM2Licensing条款:BSD 3- clause编程语言:c++上一版本的期刊参考:Comput。理论物理。common . 264(2021) 107967新版本是否取代旧版本?新版本的原因:YAM2 2.0结合了M2变量的最新理论进展,包括壳上质量和顶点重建约束,以确保与该领域的最新发展保持一致。与此同时,用户驱动的改进(如CMake支持、示例代码、ROOT集成和性能优化)增强了可用性和可移植性。这些更新使软件包更强大,更容易用于强子和轻子对撞机的对撞机分析。修订摘要:当前版本的主要改进之一是在M2变量中加入了额外的运动学约束:壳上质量条件作为等式约束实现,顶点重建信息作为不等式约束实现。壳层质量条件与处理所谓的鹿角衰变拓扑特别相关,在鹿角衰变拓扑中,母粒子Y通过Y→A1+A2→a1B1+a2B2衰变。在该衰变拓扑中,Y为层上共振,Ai为中间态,Ai为可见粒子,Bi (i=1,2)为不可见粒子[1]。这与参考文献[2]中引入的M2Cons变量相对应,该变量被提出作为在强子对撞机中寻找半隐形衰减的重共振的工具。由于质心能量在轻子对撞机(如SuperKEKB的Belle实验)和未来的轻子对撞机中是固定的,因此同样的结构自然可以应用于这些环境中的成对产生衰变拓扑,如参考文献[3,4]中所讨论的。在这种情况下,还必须考虑到缺失动量的纵向分量,这个功能在新版本中已经完全实现。此外,最近的研究表明,M2变量可以通过结合对母粒子飞行方向的约束(从顶点重建信息[5]推断)来扩展。这些已经在新版本中作为不等式约束实现,并成功进行了测试。对代码库的小改进包括:•用于探索和测试基本功能的额外示例代码。•支持基于cmake的构建,提高可移植性和与外部项目的集成。•将YAM2集成到基于ROOT框架[6]的分析代码中的说明。•一般的代码清理和性能优化。由于此版本引入了破坏性更改,建议用户更新其分析代码以确保完全兼容。问题性质:M2变量形成了一组运动可观测值,通过结合额外的运动学约束,如壳层质量条件,在对产生的粒子半无形衰变[8]的事件中,推广了众所周知的奇异质量MT2[7]。与仅依赖于横向运动学的MT2相比,M2框架可以在适当的约束条件下通过包括纵向动量分量来利用完整的事件拓扑。M2变量的计算被表述为约束的数值最小化,其中不可见的动量根据测量的缺失横向动量和施加的质量壳条件而变化。因此,必须采用合适的数值算法,同时兼顾效率和计算成本。求解方法:M2变量的计算被表述为约束最小化问题,其中不可见动量被视为受测量的缺失横向动量和附加运动学条件(如壳上质量约束)约束的自由参数。 这需要最小化由M2变量定义的目标函数,同时满足非线性等式和不等式约束。在现有的约束优化方法中,YAM2采用了顺序二次规划和基于导数的准牛顿算法相结合的方法。事实证明,当导数信息可用时,该方法在定位局部极小值方面既鲁棒又有效,这对于大规模蒙特卡罗事件分析是必不可少的[1]。该实现依赖于公开可用的NLopt库[10],该库为非线性问题提供了广泛的优化例程集合。在当前版本的YAM2中,可用的算法集已经扩展到包括可选方法,例如增广拉格朗日方法,从而为用户提供了更大的灵活性,可以根据他们的分析需要来平衡数值稳定性、准确性和计算成本。引用T[1]。韩,金i.w.,宋杰,Phys。列托人。[j].中国生物医学工程学报(英文版),2010,29(5):579 - 579。[2] P。科纳尔,A.K.斯温,物理学家Rev. D 93 (1) (2016) 015021, arXiv:1509.00298 [p-ph].链接本文:[3] D。Guadagnoli, C.B. Park, F. Tenchini, Phys。列托人。[j].中国生物医学工程学报,2016,32(2):444 - 446。[4] C.B.帕克,新物理。Sae Mulli 73(8)(2023) 664-674。[5] G。de Marino, D. Guadagnoli, C.B. Park, K. Trabelsi, Phys。Rev. D 107 (5) (2023) 055010, arXiv:2209.03387 [hep-ph]。[6] R。布朗,F. Rademakers,核子。Instrum。方法。A 389(1-2)(1997) 81-86。[7] C.G.莱斯特,D.J.萨默斯,物理学家。列托人。[j].中国生物医学工程学报(英文版),2009(5):559 - 561。[8]至此赵建军,李建军,李建军,李建军,李建军,李建军,李建军,李建军,李建军,李建军,李建军。高能物理学报,2014,33 (4):649 - 649 [p-ph]。[9] C.B.公园,第一版。理论物理。[j].中国生物医学工程学报,2016,27 (2):357 - 357 .Johnson, NLopt非线性优化包,https://github.com/stevengj/nlopt。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信