Machine learning-assisted dual-objective synergistic optimization for mechanical and electrical properties of CNTs/Cu composites

IF 7.7 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
XianFeng Zhao, ChangChun Ge
{"title":"Machine learning-assisted dual-objective synergistic optimization for mechanical and electrical properties of CNTs/Cu composites","authors":"XianFeng Zhao,&nbsp;ChangChun Ge","doi":"10.1016/j.coco.2025.102583","DOIUrl":null,"url":null,"abstract":"<div><div>Overcoming the tensile strength-electrical conductivity trade-off in CNTs/Cu composites remains challenging due to complex multi-parameter coupling. We present a novel machine learning (ML)-assisted synergistic design framework enabling simultaneous optimization of both properties. Systematically evaluating seven ML algorithms under diverse preprocessing strategies, we established an effective modeling approach for limited datasets, achieving sub-10 % prediction errors for ultimate tensile strength and conductivity. Crucially, integrating ML predictions with Pareto optimization via the weighted Tchebycheff methodology generated experimentally validated, manufacturable process parameter sets, resolving conventional trial-and-error limitations. Experimental fabrication and comprehensive characterization confirmed the framework's accuracy, practicality, scalability, and engineering significance. This research establishes an intelligent pathway for the synergistic design of advanced metal matrix composites.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"59 ","pages":"Article 102583"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925003365","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Overcoming the tensile strength-electrical conductivity trade-off in CNTs/Cu composites remains challenging due to complex multi-parameter coupling. We present a novel machine learning (ML)-assisted synergistic design framework enabling simultaneous optimization of both properties. Systematically evaluating seven ML algorithms under diverse preprocessing strategies, we established an effective modeling approach for limited datasets, achieving sub-10 % prediction errors for ultimate tensile strength and conductivity. Crucially, integrating ML predictions with Pareto optimization via the weighted Tchebycheff methodology generated experimentally validated, manufacturable process parameter sets, resolving conventional trial-and-error limitations. Experimental fabrication and comprehensive characterization confirmed the framework's accuracy, practicality, scalability, and engineering significance. This research establishes an intelligent pathway for the synergistic design of advanced metal matrix composites.
机器学习辅助下CNTs/Cu复合材料力学和电学性能的双目标协同优化
由于复杂的多参数耦合,克服CNTs/Cu复合材料的拉伸强度和导电性之间的权衡仍然具有挑战性。我们提出了一种新的机器学习(ML)辅助的协同设计框架,能够同时优化这两种特性。系统地评估了不同预处理策略下的7种ML算法,我们建立了一种有效的有限数据集建模方法,最终拉伸强度和电导率的预测误差低于10%。至关重要的是,通过加权Tchebycheff方法将ML预测与Pareto优化相结合,生成了经过实验验证的可制造工艺参数集,解决了传统的试错限制。实验制作和综合表征证实了该框架的准确性、实用性、可扩展性和工程意义。本研究为先进金属基复合材料的协同设计开辟了一条智能途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信