Elementary construction of canonical bases, foldings, and piecewise linear bijections

IF 0.8 2区 数学 Q2 MATHEMATICS
Toshiaki Shoji , Zhiping Zhou
{"title":"Elementary construction of canonical bases, foldings, and piecewise linear bijections","authors":"Toshiaki Shoji ,&nbsp;Zhiping Zhou","doi":"10.1016/j.jalgebra.2025.08.013","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msubsup><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>−</mo></mrow></msubsup></math></span> be the negative half of a quantum group of finite type. We construct the canonical basis of <span><math><msubsup><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>−</mo></mrow></msubsup></math></span> by applying the folding theory of quantum groups and piecewise linear parametrization of canonical basis. Our construction is elementary, in the sense that we don't appeal to Lusztig's geometric theory of canonical bases, nor to Kashiwara's theory of crystal bases.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":"Pages 481-502"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004880","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Uq be the negative half of a quantum group of finite type. We construct the canonical basis of Uq by applying the folding theory of quantum groups and piecewise linear parametrization of canonical basis. Our construction is elementary, in the sense that we don't appeal to Lusztig's geometric theory of canonical bases, nor to Kashiwara's theory of crystal bases.
正则基、折叠和分段线性双射的初等构造
设Uq−为有限型量子群的负一半。利用量子群的折叠理论和正则基的分段线性参数化构造了Uq -的正则基。我们的构造是基本的,在某种意义上,我们没有诉诸于吕兹提格的正则基几何理论,也没有诉诸于柏原的晶体基理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信