Technology prediction of a 3D model using neural network

IF 2 Q3 ENGINEERING, MANUFACTURING
Grzegorz Miebs , Rafał A. Bachorz
{"title":"Technology prediction of a 3D model using neural network","authors":"Grzegorz Miebs ,&nbsp;Rafał A. Bachorz","doi":"10.1016/j.mfglet.2025.08.005","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate estimation of production times is critical for effective manufacturing scheduling, yet traditional methods relying on expert analysis or historical data often fall short in dynamic or customized production environments. This paper introduces a data-driven approach that predicts manufacturing steps and their durations directly from 3D models of products with exposed geometries. By rendering the model into multiple 2D images and leveraging a neural network inspired by the Generative Query Network, the method learns to map geometric features into time estimates for predefined production steps with a mean absolute error below 3 s making planning across varied product types easier.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"46 ","pages":"Pages 5-9"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846325002706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate estimation of production times is critical for effective manufacturing scheduling, yet traditional methods relying on expert analysis or historical data often fall short in dynamic or customized production environments. This paper introduces a data-driven approach that predicts manufacturing steps and their durations directly from 3D models of products with exposed geometries. By rendering the model into multiple 2D images and leveraging a neural network inspired by the Generative Query Network, the method learns to map geometric features into time estimates for predefined production steps with a mean absolute error below 3 s making planning across varied product types easier.
基于神经网络的三维模型预测技术
准确估计生产时间对于有效的制造调度至关重要,然而传统的依赖于专家分析或历史数据的方法往往在动态或定制的生产环境中不足。本文介绍了一种数据驱动的方法,该方法直接从具有暴露几何形状的产品的3D模型中预测制造步骤及其持续时间。通过将模型渲染成多个2D图像,并利用受生成查询网络启发的神经网络,该方法学习将几何特征映射到预定义生产步骤的时间估计中,平均绝对误差低于3秒,使不同产品类型的规划更容易。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信