Semi-hyponormality of commuting pairs of Hilbert space operators

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Raúl E. Curto , Jasang Yoon
{"title":"Semi-hyponormality of commuting pairs of Hilbert space operators","authors":"Raúl E. Curto ,&nbsp;Jasang Yoon","doi":"10.1016/j.bulsci.2025.103718","DOIUrl":null,"url":null,"abstract":"<div><div>We first find an explicit formula for the square root of positive <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> operator matrices with commuting entries, and then use it to define and study semi-hyponormality for commuting pairs of Hilbert space operators. For the well-known 3–parameter family <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> of 2–variable weighted shifts, we completely identify the parametric regions in the open unit cube where <span><math><msub><mrow><mi>W</mi></mrow><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>a</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is subnormal, hyponormal, semi-hyponormal, and weakly hyponormal. As a result, we describe in detail concrete sub-regions where each property holds. For instance, we identify the specific sub-region where weak hyponormality holds but semi-hyponormality does not hold, and vice versa. To accomplish this, we employ a new technique emanating from the homogeneous orthogonal decomposition of <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msubsup><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></math></span>. The technique allows us to reduce the study of semi-hyponormality to positivity considerations of a sequence of <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> scalar matrices. It also requires a specific formula for the square root of <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> scalar and operator matrices, and we obtain that along the way. As an application of our main results, we show that the Drury-Arveson shift is <em>not</em> semi-hyponormal. Taken together, the new results offer a sharp contrast between the above-mentioned properties for unilateral weighted shifts and their 2–variable counterparts.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103718"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001447","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We first find an explicit formula for the square root of positive 2×2 operator matrices with commuting entries, and then use it to define and study semi-hyponormality for commuting pairs of Hilbert space operators. For the well-known 3–parameter family W(α,β)(a,x,y) of 2–variable weighted shifts, we completely identify the parametric regions in the open unit cube where W(α,β)(a,x,y) is subnormal, hyponormal, semi-hyponormal, and weakly hyponormal. As a result, we describe in detail concrete sub-regions where each property holds. For instance, we identify the specific sub-region where weak hyponormality holds but semi-hyponormality does not hold, and vice versa. To accomplish this, we employ a new technique emanating from the homogeneous orthogonal decomposition of 2(Z+2). The technique allows us to reduce the study of semi-hyponormality to positivity considerations of a sequence of 2×2 scalar matrices. It also requires a specific formula for the square root of 2×2 scalar and operator matrices, and we obtain that along the way. As an application of our main results, we show that the Drury-Arveson shift is not semi-hyponormal. Taken together, the new results offer a sharp contrast between the above-mentioned properties for unilateral weighted shifts and their 2–variable counterparts.
Hilbert空间算子交换对的半次反常
首先给出了具有可交换项的正2×2算子矩阵的平方根的显式公式,然后用它来定义和研究Hilbert空间算子的可交换对的半次反常。对于众所周知的2变量加权位移的3参数族W(α,β)(a,x,y),我们完全识别了开放单元立方体中W(α,β)(a,x,y)为次正规、次正规、半次正规和弱次正规的参数区域。因此,我们详细描述了每个属性所包含的具体子区域。例如,我们确定弱次反常存在但半次反常不存在的特定子区域,反之亦然。为了实现这一目标,我们采用了一种新的技术,该技术源自于l2 (Z+2)的齐次正交分解。该技术允许我们将半次反常的研究减少到2×2标量矩阵序列的正性考虑。它还需要一个特定的公式来求2×2标量和算子矩阵的平方根,我们在这个过程中得到了它。作为我们主要结果的一个应用,我们证明了Drury-Arveson位移不是半次异常。总的来说,新的结果提供了一个鲜明的对比,上述性质的单边加权位移和他们的2变量对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信