Sokratis Mamarikas , Stylianos Doulgeris , Nikolaos Aletras , Carol Ka-Lok Wong , Zissis Samaras , Leonidas Ntziachristos
{"title":"Expressing the energy consumption of electric buses with mesoscopic traffic variables","authors":"Sokratis Mamarikas , Stylianos Doulgeris , Nikolaos Aletras , Carol Ka-Lok Wong , Zissis Samaras , Leonidas Ntziachristos","doi":"10.1016/j.aeaoa.2025.100367","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on energy consumption modeling approaches for traffic and examines how they deviate when applied to evaluate Battery Electric Buses (BEBs), in a try to identify an approach that combines simplicity with accuracy. To do so, the paper exploits three of them: a micro, a meso and a macro one. The microscopic approach relies on a detailed power-based vehicle model that uses second-by-second vehicle speed profiles as traffic activity input, and it serves here as a reference tool. The approach of average speed was employed to represent the macroscopic one that uses a single traffic activity input. For the mesoscopic case, a new function had to be developed that would require traffic inputs on a level-of-detail in between the macroscopic and microscopic scale. A statistical analysis on several standardized driving cycles was conducted to select such inputs, leading to a relationship that associates consumption with two stop-related variables (number and duration). The mesoscopic and macroscopic models could then be evaluated, by comparing their consumption estimations with the detailed microscopic calculations over the same cases (real-world urban traffic of Athens & Hong-Kong, and traffic measures). While the macroscopic results revealed well-known limitations in accuracy of the average speed approach, as it deviated from the microscopic model by 10 % for urban traffic and 20 % for measures, the mesoscopic one closely matched the microscopic model (max 5 % error). Thus, for BEBs, a mesoscopic approach with only two activity inputs (stop-related variables) can satisfy requirements from energy modeling for valid estimations and simplicity in use. With these characteristics, the approach presents exploitation potential in multiple applications of urban transportation systems.</div></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"27 ","pages":"Article 100367"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590162125000577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on energy consumption modeling approaches for traffic and examines how they deviate when applied to evaluate Battery Electric Buses (BEBs), in a try to identify an approach that combines simplicity with accuracy. To do so, the paper exploits three of them: a micro, a meso and a macro one. The microscopic approach relies on a detailed power-based vehicle model that uses second-by-second vehicle speed profiles as traffic activity input, and it serves here as a reference tool. The approach of average speed was employed to represent the macroscopic one that uses a single traffic activity input. For the mesoscopic case, a new function had to be developed that would require traffic inputs on a level-of-detail in between the macroscopic and microscopic scale. A statistical analysis on several standardized driving cycles was conducted to select such inputs, leading to a relationship that associates consumption with two stop-related variables (number and duration). The mesoscopic and macroscopic models could then be evaluated, by comparing their consumption estimations with the detailed microscopic calculations over the same cases (real-world urban traffic of Athens & Hong-Kong, and traffic measures). While the macroscopic results revealed well-known limitations in accuracy of the average speed approach, as it deviated from the microscopic model by 10 % for urban traffic and 20 % for measures, the mesoscopic one closely matched the microscopic model (max 5 % error). Thus, for BEBs, a mesoscopic approach with only two activity inputs (stop-related variables) can satisfy requirements from energy modeling for valid estimations and simplicity in use. With these characteristics, the approach presents exploitation potential in multiple applications of urban transportation systems.