P. Vallés , J. Segovia-Burillo , M. Morales-Hernández , V. Roeber , P. García-Navarro
{"title":"Incorporating the vertical velocity in a coupled Lagrangian–Eulerian approach for particle transport in shallow flows","authors":"P. Vallés , J. Segovia-Burillo , M. Morales-Hernández , V. Roeber , P. García-Navarro","doi":"10.1016/j.advwatres.2025.105085","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a method to incorporate vertical velocity into a two-dimensional depth-averaged Shallow Water Equation (2DH SWE) model, thereby improving the calculation of particle trajectories in a Lagrangian Particle Tracking (LPT) framework. The resulting formulation couples Eulerian and Lagrangian approaches. The vertical velocity is also used to modify the dispersion terms in the LPT model. The proposed approximation is first validated—without particle transport—by comparison with Hyperbolic–Elliptic and Hyperbolic-Relaxed Non-Hydrostatic Pressure (NHP) models. The differences between models are minor, confirming the suitability of the vertical velocity approximation for shallow flow problems. Subsequently, the method is applied to particle transport scenarios, demonstrating that including vertical velocity yields more realistic particle trajectories in complex flow situations.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"205 ","pages":"Article 105085"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030917082500199X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a method to incorporate vertical velocity into a two-dimensional depth-averaged Shallow Water Equation (2DH SWE) model, thereby improving the calculation of particle trajectories in a Lagrangian Particle Tracking (LPT) framework. The resulting formulation couples Eulerian and Lagrangian approaches. The vertical velocity is also used to modify the dispersion terms in the LPT model. The proposed approximation is first validated—without particle transport—by comparison with Hyperbolic–Elliptic and Hyperbolic-Relaxed Non-Hydrostatic Pressure (NHP) models. The differences between models are minor, confirming the suitability of the vertical velocity approximation for shallow flow problems. Subsequently, the method is applied to particle transport scenarios, demonstrating that including vertical velocity yields more realistic particle trajectories in complex flow situations.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes