Visualization of Escher-like hyperbolic tessellations

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Peichang Ouyang , Kwok Wai Chung , Alain Nicolas , Robert W. Fathauer , David Bailey , Krzysztof Gdawiec
{"title":"Visualization of Escher-like hyperbolic tessellations","authors":"Peichang Ouyang ,&nbsp;Kwok Wai Chung ,&nbsp;Alain Nicolas ,&nbsp;Robert W. Fathauer ,&nbsp;David Bailey ,&nbsp;Krzysztof Gdawiec","doi":"10.1016/j.amc.2025.129710","DOIUrl":null,"url":null,"abstract":"<div><div>By combining mathematical principles, modern computer graphics techniques, and the efforts of mathematically inclined artists, we present a visualization method for generating aesthetic patterns in hyperbolic space. To this end, we first establish fast algorithms to construct hyperbolic tilings in the Poincaré disk model. Then, using templates designed by graphic artists, we specify computer techniques to render hyperbolic tilings, which results in Escher-like patterns. Moreover, we present a simple method to realize novel hyperbolic kaleidoscopic effect. To obtain more diverse patterns, we introduce several conformal mappings to create visually appealing tessellations on the other spaces. The proposed methods can be easily implemented using shaders to obtain high-quality tessellations, which have good potential for application in the field of artistic decoration.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"510 ","pages":"Article 129710"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325004369","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

By combining mathematical principles, modern computer graphics techniques, and the efforts of mathematically inclined artists, we present a visualization method for generating aesthetic patterns in hyperbolic space. To this end, we first establish fast algorithms to construct hyperbolic tilings in the Poincaré disk model. Then, using templates designed by graphic artists, we specify computer techniques to render hyperbolic tilings, which results in Escher-like patterns. Moreover, we present a simple method to realize novel hyperbolic kaleidoscopic effect. To obtain more diverse patterns, we introduce several conformal mappings to create visually appealing tessellations on the other spaces. The proposed methods can be easily implemented using shaders to obtain high-quality tessellations, which have good potential for application in the field of artistic decoration.
埃舍尔类双曲镶嵌的可视化
通过结合数学原理、现代计算机图形技术和数学倾向艺术家的努力,我们提出了一种在双曲空间中生成美学模式的可视化方法。为此,我们首先建立了在poincarcar盘模型中构造双曲平铺的快速算法。然后,使用图形艺术家设计的模板,我们指定计算机技术来渲染双曲平铺,从而产生类似埃舍尔的图案。此外,我们还提出了一种实现新型双曲万花筒效果的简单方法。为了获得更多样化的模式,我们引入了几个保角映射,以在其他空间上创建视觉上吸引人的镶嵌。所提出的方法可以很容易地使用着色器实现高质量的镶嵌,在艺术装饰领域具有良好的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信