Structure-guided design and triplicate molecular dynamics evaluation of mutant peptide inhibitors targeting SARS-CoV-2 main protease (Mpro).

In silico pharmacology Pub Date : 2025-09-04 eCollection Date: 2025-01-01 DOI:10.1007/s40203-025-00409-2
Ankita Bhagat, Lakshmi Mounika Kelam, Nilanjan Samanta, M Elizabeth Sobhia
{"title":"Structure-guided design and triplicate molecular dynamics evaluation of mutant peptide inhibitors targeting SARS-CoV-2 main protease (Mpro).","authors":"Ankita Bhagat, Lakshmi Mounika Kelam, Nilanjan Samanta, M Elizabeth Sobhia","doi":"10.1007/s40203-025-00409-2","DOIUrl":null,"url":null,"abstract":"<p><p>The global health crisis caused by SARS-CoV-2 underscores the urgent need for effective antiviral therapeutics. The SARS-CoV-2 main protease (Mpro) is a crucial enzyme in viral replication, making it a prime target for drug development. In this study, we designed and evaluated peptide inhibitors targeting Mpro by introducing systematic mutations in the Nsp10/11 cleavage site peptide (QLMPER). A library of 214 mutant peptides was generated, from which 25 single-mutant and 70 multi-mutant peptides exhibited strong interactions with Mpro. The top four multi-mutant peptides were selected based on docking scores, molecular dynamics (MD) simulations, and MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) binding free energy calculations. Triplicate 100 ns molecular dynamics simulations assessed the stability of these complexes, revealing that M3 exhibited the highest structural stability and lowest binding free energy (- 34 kcal/mol), outperforming the wild-type peptide (- 4.28 kcal/mol). Computational infrared (IR) spectral analysis confirmed structural modifications induced by mutations, while HOMO-LUMO analysis indicated enhanced reactivity for M3 (FLFPFR). These findings suggest that M3 (FLFPFR) is a promising candidate for SARS-CoV-2 inhibition, highlighting the potential of rationally designed peptide inhibitors in antiviral drug discovery.</p><p><strong>Graphical abstract: </strong>Computational workflow for design and evaluation of mutant peptides against SARS-CoV-2 Mpro, highlighting the workflow, key interactions, and improved binding of mutants at S2 and S3/S4 subsites.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-025-00409-2.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"13 3","pages":"125"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411358/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-025-00409-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The global health crisis caused by SARS-CoV-2 underscores the urgent need for effective antiviral therapeutics. The SARS-CoV-2 main protease (Mpro) is a crucial enzyme in viral replication, making it a prime target for drug development. In this study, we designed and evaluated peptide inhibitors targeting Mpro by introducing systematic mutations in the Nsp10/11 cleavage site peptide (QLMPER). A library of 214 mutant peptides was generated, from which 25 single-mutant and 70 multi-mutant peptides exhibited strong interactions with Mpro. The top four multi-mutant peptides were selected based on docking scores, molecular dynamics (MD) simulations, and MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) binding free energy calculations. Triplicate 100 ns molecular dynamics simulations assessed the stability of these complexes, revealing that M3 exhibited the highest structural stability and lowest binding free energy (- 34 kcal/mol), outperforming the wild-type peptide (- 4.28 kcal/mol). Computational infrared (IR) spectral analysis confirmed structural modifications induced by mutations, while HOMO-LUMO analysis indicated enhanced reactivity for M3 (FLFPFR). These findings suggest that M3 (FLFPFR) is a promising candidate for SARS-CoV-2 inhibition, highlighting the potential of rationally designed peptide inhibitors in antiviral drug discovery.

Graphical abstract: Computational workflow for design and evaluation of mutant peptides against SARS-CoV-2 Mpro, highlighting the workflow, key interactions, and improved binding of mutants at S2 and S3/S4 subsites.

Supplementary information: The online version contains supplementary material available at 10.1007/s40203-025-00409-2.

靶向SARS-CoV-2主蛋白酶(Mpro)的突变肽抑制剂的结构引导设计和三重分子动力学评价
由SARS-CoV-2引起的全球卫生危机强调了对有效抗病毒治疗的迫切需要。SARS-CoV-2主蛋白酶(Mpro)是病毒复制的关键酶,使其成为药物开发的主要目标。在这项研究中,我们设计并评估了通过在Nsp10/11切割位点肽(qlper)中引入系统突变来靶向Mpro的肽抑制剂。建立了214个突变肽库,其中25个单突变肽和70个多突变肽与Mpro有强相互作用。根据对接分数、分子动力学(MD)模拟和MM-GBSA(分子力学-广义出生表面积)结合自由能计算,选择了排名前4位的多突变肽。三次100 ns分子动力学模拟评估了这些配合物的稳定性,结果表明M3具有最高的结构稳定性和最低的结合自由能(- 34 kcal/mol),优于野生型肽(- 4.28 kcal/mol)。计算红外(IR)光谱分析证实了突变引起的结构修饰,而HOMO-LUMO分析表明M3 (FLFPFR)的反应性增强。这些发现表明,M3 (FLFPFR)是抑制SARS-CoV-2的一个有希望的候选者,突出了合理设计肽抑制剂在抗病毒药物发现中的潜力。图形摘要:设计和评估抗SARS-CoV-2 Mpro突变肽的计算工作流程,重点介绍了工作流程、关键相互作用以及突变体在S2和S3/S4亚位点的改进结合。补充信息:在线版本包含补充资料,提供地址为10.1007/s40203-025-00409-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信