When artificial intelligence meets protein research.

Open research Europe Pub Date : 2025-07-15 eCollection Date: 2025-01-01 DOI:10.12688/openreseurope.20628.1
Sonia Longhi, Salvador Ventura, Sandra Macedo-Ribeiro, Leandro G Radusky, Jovana Kovačević, R Gonzalo Parra, Miguel A Andrade-Navarro, Andrey V Kajava, Zuzana Bednáriková, Alexander Monzon, Rita Vilaça
{"title":"When artificial intelligence meets protein research.","authors":"Sonia Longhi, Salvador Ventura, Sandra Macedo-Ribeiro, Leandro G Radusky, Jovana Kovačević, R Gonzalo Parra, Miguel A Andrade-Navarro, Andrey V Kajava, Zuzana Bednáriková, Alexander Monzon, Rita Vilaça","doi":"10.12688/openreseurope.20628.1","DOIUrl":null,"url":null,"abstract":"<p><p>The 2024 Nobel Prizes in Chemistry and Physics mark a watershed moment in the convergence of artificial intelligence (AI) and molecular biology. This article explores how AI, particularly deep learning and neural networks, has revolutionized protein science through breakthroughs in structure prediction and computational design. It highlights the contributions of 2024 Nobel laureates John Hopfield, Geoffrey Hinton, David Baker, Demis Hassabis, and John Jumper, whose foundational work laid the groundwork for AI tools such as AlphaFold. These tools are transforming our understanding of protein folding, and the dynamics of non-globular proteins, including intrinsically disordered proteins. While AI-driven methods have made predicting protein structures faster and more accessible, they also underscore ongoing scientific challenges, including the dynamics of protein folding and amyloid aggregation. European initiatives, such as the COST Actions NGP-net (BM1405) and ML4NGP (CA21160), are spearheading efforts to bridge these gaps by integrating AI and experimental data in the study of non-globular proteins. Together, these developments signal a transformative shift in biology, paving the way for novel discoveries in medicine, biotechnology, and materials science.</p>","PeriodicalId":74359,"journal":{"name":"Open research Europe","volume":"5 ","pages":"185"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open research Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/openreseurope.20628.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The 2024 Nobel Prizes in Chemistry and Physics mark a watershed moment in the convergence of artificial intelligence (AI) and molecular biology. This article explores how AI, particularly deep learning and neural networks, has revolutionized protein science through breakthroughs in structure prediction and computational design. It highlights the contributions of 2024 Nobel laureates John Hopfield, Geoffrey Hinton, David Baker, Demis Hassabis, and John Jumper, whose foundational work laid the groundwork for AI tools such as AlphaFold. These tools are transforming our understanding of protein folding, and the dynamics of non-globular proteins, including intrinsically disordered proteins. While AI-driven methods have made predicting protein structures faster and more accessible, they also underscore ongoing scientific challenges, including the dynamics of protein folding and amyloid aggregation. European initiatives, such as the COST Actions NGP-net (BM1405) and ML4NGP (CA21160), are spearheading efforts to bridge these gaps by integrating AI and experimental data in the study of non-globular proteins. Together, these developments signal a transformative shift in biology, paving the way for novel discoveries in medicine, biotechnology, and materials science.

当人工智能遇上蛋白质研究。
2024年诺贝尔化学和物理学奖标志着人工智能(AI)和分子生物学融合的分水岭时刻。本文探讨了人工智能,特别是深度学习和神经网络如何通过在结构预测和计算设计方面的突破,彻底改变了蛋白质科学。它强调了2024年诺贝尔奖得主约翰·霍普菲尔德、杰弗里·辛顿、大卫·贝克、戴米斯·哈萨比斯和约翰·跳普的贡献,他们的基础性工作为AlphaFold等人工智能工具奠定了基础。这些工具正在改变我们对蛋白质折叠的理解,以及非球状蛋白质的动力学,包括内在无序的蛋白质。虽然人工智能驱动的方法可以更快、更容易地预测蛋白质结构,但它们也强调了正在进行的科学挑战,包括蛋白质折叠和淀粉样蛋白聚集的动力学。欧洲倡议,如成本行动NGP-net (BM1405)和ML4NGP (CA21160),正在通过将人工智能和实验数据整合到非球状蛋白的研究中,率先努力弥合这些差距。总之,这些发展标志着生物学的革命性转变,为医学、生物技术和材料科学的新发现铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信