Deep learning-based embedding of functional connectivity profiles for precision functional mapping.

Imaging neuroscience (Cambridge, Mass.) Pub Date : 2025-09-03 eCollection Date: 2025-01-01 DOI:10.1162/IMAG.a.129
Jiaxin Cindy Tu, Jung-Hoon Kim, Chenyan Lu, Patrick H Luckett, Babatunde Adeyemo, Joshua S Shimony, Jed T Elison, Adam T Eggebrecht, Muriah D Wheelock
{"title":"Deep learning-based embedding of functional connectivity profiles for precision functional mapping.","authors":"Jiaxin Cindy Tu, Jung-Hoon Kim, Chenyan Lu, Patrick H Luckett, Babatunde Adeyemo, Joshua S Shimony, Jed T Elison, Adam T Eggebrecht, Muriah D Wheelock","doi":"10.1162/IMAG.a.129","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial similarity of functional connectivity profiles across matching anatomical locations in individuals is often calculated to delineate individual differences in functional networks. Likewise, spatial similarity is assessed across average functional connectivity profiles of groups to evaluate the maturity of functional networks during development. Despite its widespread use, spatial similarity is limited to comparing two samples at a time. In this study, we employed a variational autoencoder to embed functional connectivity profiles from various anatomical locations, individuals, and group averages for simultaneous comparison. We demonstrate that our variational autoencoder, with pre-trained weights, can project new functional connectivity profiles from the vertex space to a latent space with as few as two dimensions, yet still retain meaningful global and local structures in the data. Functional connectivity profiles from various functional networks occupy distinct compartments of the latent space. Moreover, the variability of functional connectivity profiles from the same anatomical location is readily captured in the latent space. We believe that this approach could be useful for visualization and exploratory analyses in precision functional mapping.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409741/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/IMAG.a.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial similarity of functional connectivity profiles across matching anatomical locations in individuals is often calculated to delineate individual differences in functional networks. Likewise, spatial similarity is assessed across average functional connectivity profiles of groups to evaluate the maturity of functional networks during development. Despite its widespread use, spatial similarity is limited to comparing two samples at a time. In this study, we employed a variational autoencoder to embed functional connectivity profiles from various anatomical locations, individuals, and group averages for simultaneous comparison. We demonstrate that our variational autoencoder, with pre-trained weights, can project new functional connectivity profiles from the vertex space to a latent space with as few as two dimensions, yet still retain meaningful global and local structures in the data. Functional connectivity profiles from various functional networks occupy distinct compartments of the latent space. Moreover, the variability of functional connectivity profiles from the same anatomical location is readily captured in the latent space. We believe that this approach could be useful for visualization and exploratory analyses in precision functional mapping.

基于深度学习的功能连接配置文件嵌入,用于精确功能映射。
在个体的匹配解剖位置上,通常计算功能连接概况的空间相似性来描述功能网络中的个体差异。同样,通过群体的平均功能连接概况来评估空间相似性,以评估发展过程中功能网络的成熟度。尽管空间相似性被广泛使用,但它仅限于一次比较两个样本。在这项研究中,我们使用了一个变分自编码器来嵌入来自不同解剖位置、个体和群体的功能连接概况,以便同时进行比较。我们证明了我们的变分自编码器,具有预训练的权值,可以将新的功能连接轮廓从顶点空间投影到只有二维的潜在空间,同时仍然保留数据中有意义的全局和局部结构。来自各种功能网络的功能连接概况占据了潜在空间的不同区域。此外,来自同一解剖位置的功能连接概况的可变性很容易在潜在空间中捕获。我们相信这种方法可以用于精确函数映射的可视化和探索性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信